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Abstract

We examine the coalition-proof equilibria of a participation game in the

provision of a (pure) public good. We study which Nash equilibria are achieved

through cooperation, and we investigate coalition-proof equilibria under strict

and weak domination. We show that under some incentive condition, (i) a

profile of strategies is a coalition-proof equilibrium under strict domination

if and only if it is a Nash equilibrium that is not strictly Pareto-dominated

by any other Nash equilibrium and (ii) every strict Nash equilibrium for non-

participants is a coalition-proof equilibrium under weak domination.
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1 Introduction

We examine the coalition-proof equilibria of a participation game in the provision

of a (pure) public good. The situation is as follows. There exist one private good

and one public good, and the public good is produced from the private good. There

are n ≥ 2 agents who simultaneously choose to either participate or not participate

in the joint production of the public good. The agents who participate choose the

level of public good and distribute its production cost in accordance with some rule.

The agents who do not participate can free-ride. Such a game has been studied by

several researchers. Saijo and Yamato (1999, 2010) and Shinohara (2009) study the

participation issue in mechanisms such as those presented by Hurwicz (1979) and

Walker (1981). An important application of our model is to the ratification game of

international environmental agreements (Barrett, 1994; Carraro and Siniscalco, 1993).

Most preceding studies investigate the Nash equilibria of the participation game.

These authors consider the case in which all agents have the same preference re-

lations. Thus, the Nash equilibria of the participation game tend to have the same

characteristic (e.g., equilibrium number of participants and equilibrium level of the

public good) even if multiple Nash equilibria exist. However, when preferences dif-

fer, there may exist multiple Nash equilibria with different characteristics. In this

paper, we allow differences in preferences and determine which Nash equilibria can

be achieved through cooperation, as modelled through the coalition-proof equilibrium

introduced by Bernheim et al. (1987). Two notions of coalition-proof equilibrium can

be defined depending upon which notion of a dominance relation is adopted. The first

is strict domination, and the second is weak domination. Let N be the set of agents

and T ⊆ N be a coalition. A strategy profile sT strictly dominates a strategy profile

s′T for T if all members of T are made better off by switching from s′T to sT . The

domination is weak if no member of T is made worse off and at least one member of T

is made better off by the switch. The set of a coalition-proof equilibrium under weak
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domination, wd coalition-proof equilibrium for short, and that under strict domina-

tion, sd coalition-proof equilibrium for short, do not necessarily intersect, as Konishi

et al. (1999) point out. We examine these two notions and clarify the relationship

between Nash equilibria and coalition-proof equilibria for each dominance relation.

Our results involve a condition that relates to participation incentives — participa-

tion inducements (Condition 1). It says that if agent i does not gain by joining a set of

participants P , then i does not gain by joining a set of participants that produces the

public good at a higher level than P . First, we show that if participation inducements

hold, the set of sd coalition-proof equilibria coincides with the set of Nash equilibria

that are not strictly Pareto-dominated by any other Nash equilibrium.

A Nash equilibrium is strict for non-participants if no agent who does not partici-

pate gains by switching to participating. Second, we prove that if Condition 1 holds,

every Nash equilibrium that is strict for non-participants is a wd coalition-proof equi-

librium.

This paper is organized as follows. In Section 2, we introduce the participation

game and the coalition-proof equilibrium under the two dominance relations. Section

3 considers the basic properties of our model, and Section 4 presents the main results.

In Section 5, we apply our results. Section 6 concludes.

2 The model

2.1 A participation game in the provision of a public good

We consider the problem of providing a (pure) public good and distributing its cost.

There exist one private good and one public good. The level of the public good can

be any non-negative real number. The set of agents is denoted by N = {1, . . . , n}

with n ≥ 2. Each agent i ∈ N has a preference relation that is representable by a

quasi-linear utility function. If y and xi designate the level of the public good and the

contribution to public good production from agent i ∈ N , respectively, then agent i’s

utility is Vi(y, xi) = vi(y) − xi. We assume that vi(0) = 0, vi is twice continuously
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differentiable, v′i > 0, and v′′i < 0. For each y ≥ 0, c(y) is the amount of private good

required to produce y units of the public good. We assume that c(0) = 0, c is twice

continuously differentiable, c′ > 0, and c′′ ≥ 0.

We consider a situation in which there exists an opportunity for the joint production

of a public good and each agent can decide whether or not to participate in the

production. We consider the following two-stage game. In the first stage, agents

simultaneously decide whether or not to participate. In the second stage, the agents

who chose to participate jointly produce the public good and distribute its cost of

production. Let P ⊆ N be a set of participants, and let (yP , (xP
j )j∈P ) be the outcome

of the second stage. We assume that the ratio allocation introduced by Kaneko (1977a,

1977b) is achieved in the second stage. Formally, y∅ := 0, and (yP , (xP
j )j∈P ) satisfies

the following conditions for each non-empty subset P of N :

yP ∈ arg max
y∈R+

∑
j∈P

vj(y)− c(y) and xP
i =

v′i(y
P )∑

j∈P v′j(y
P )

c(yP ) for each i ∈ P.

We further assume that yP > 0 for each non-empty subset P of N .*1

We are not concerned with how the ratio allocation is attained in the second stage.

However, if participants play the mechanisms constructed by Hurwicz (1979), Walker

(1981), and Corchon and Wilkie (1996), the ratio allocation can be achieved at equi-

librium of the mechanism.

Agents who select non-participation use the public good at no cost because of its

non-excludability.

Assumption 1 For each P ⊆ N and for each i /∈ P , xP
i = 0 and i consumes yP .

Given the outcome of the second stage, the participation-decision stage can be

reduced to the following simultaneous game. Each agent i chooses either si = I

(participation) or si = O (non-participation). Let P (s) := {i ∈ N | si = I} be the

set of participants at profile s = (s1, . . . , sn). Then, each agent i obtains the utility

*1 This assumption is not essential. In the case of yP = 0 for some non-empty subset P of N , if

our discussion is applied to each Q with yQ > 0, the same conclusion can be obtained.

4



Vi

(
yP (s), x

P (s)
i

)
. In other words, the participants produce the public good and share

the cost of the public good as above. Each non-participant uses the public good at

no cost. We call this reduced game the participation game. It is formally defined as

follows.

Definition 1 The participation game induced from (Vi)i∈N is the list G =[
N, Sn = {I, O}n, (Ui)i∈N

]
, where Ui, payoff function of i ∈ N , is defined by

Ui(s) = Vi

(
yP (s), x

P (s)
i

)
for each s ∈ Sn.

2.2 The definition of coalition-proof equilibria

We limit our attention to pure strategy profiles.

A Nash equilibrium of a participation game is defined as usual.

Next, we define the notion of a coalition-proof equilibrium (Bernheim et al., 1987).

It is a refinement of Nash equilibria based on stability against self-enforcing coalitional

deviations. It is based on the notion of a restricted game. A restricted game is defined

for each subset of agents and for each strategy of the agents outside the subset. For

each D ⊆ N , we denote the complement of D by −D and a strategy profile for D

by sD ∈ S#D.*2 We simply write sN = s. Let T ( N . Let s−T ∈ Sn−#T . The

restricted game G|s−T is the game in which T plays G, taking it as given that the

other agents choose s−T . That is, the set of agents is T , set of strategy profiles is

S#T , and payoff function for each i ∈ T is the function Ũi : S#T → R defined by

Ũi(sT ) = Ui(sT , s−T ) for each sT ∈ S#T .

A coalition-proof equilibrium is defined under two different notions of dominance.

First, given T ⊆ N and s−T ∈ Sn−#T , a strategy profile sT ∈ S#T strictly dominates

a strategy profile s̃T ∈ S#T for T at s−T if all members of T are made better off by

switching from s̃T to sT . Second, a strategy profile sT weakly dominates a strategy

profile s̃T for T at s−T if no member of T is made worse off and at least one member

*2 For each set D ⊆ N , #D means the cardinality of D.
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of T is made better off by switching from s̃T to sT . Definitions 2 and 3 below are

for coalition-proof equilibria under strict domination and under weak domination,

respectively.

Definition 2 A coalition-proof equilibrium under strict domination, or sd coalition-

proof equilibrium for short, (s1, . . . , sn) is defined inductively with respect to the

number of agents t:

• When t = 1, for each i ∈ N , si is an sd coalition-proof equilibrium for G|s−i if

si ∈ argmax Ui(s
′
i, s−i) s.t. s

′
i ∈ S.

• Let T ⊆ N with t = #T ≥ 2. Assume that sd coalition-proof equilibria have

been defined in the restricted games G|s−Q for each Q ( T .

• Consider the restricted game G|s−T with t agents.

– A strategy profile sT ∈ St is self-enforcing under strict domination, or sd

self-enforcing, if sQ is an sd coalition-proof equilibrium of G|s−Q for each

Q ( T .

– A strategy profile sT is an sd coalition-proof equilibrium of G|s−T if it is

an sd self-enforcing strategy profile and no other sd self-enforcing strategy

profile ŝT ∈ St exists such that Ui(ŝT , s−T ) > Ui(sT , s−T ) for each i ∈ T .

Definition 3 The definition of a coalition-proof equilibrium under weak domination,

or wd coalition-proof equilibrium for short, is derived from Definition 2 by substituting

“weak domination” for “strict domination.”

The sd coalition-proof equilibria are defined as the weakly Pareto-efficient frontier

within the set of sd self-enforcing strategy profiles. The sd self-enforcing strategy

profiles are recursively defined with respect to the number of agents in coalitions. At

an sd self-enforcing strategy profile of N , no proper coalition of N can coordinate its

members’ strategies in such a way that all members of the coalition are made better off

and no proper subset of the coalition can further deviate in a self-enforcing way. The

wd coalition-proof equilibria are similarly defined based on weak domination. These
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two notions of coalition-proof equilibrium do not necessarily intersect. See Konishi et

al. (1999) and Shinohara (2005) for details.

3 Basic properties of the participation game

3.1 Properties for payoff functions

We define the payoff functions for each P ⊆ N and each i ∈ N .

ui(P ) =


vi(y

P )− v′i(y
P )∑

j∈P v′j(y
P )

c(yP ) if i ∈ P ,

vi(y
P ) otherwise.

Lemma 1 states that the level of the public good increases as the number of par-

ticipants increases.

Lemma 1 For each pair P, Q ⊆ N , if Q ( P , then yP > yQ.

The proof is immediate.

Lemma 2 For each pair P , Q ⊆ N , if yP > yQ, then

ui(P ) > ui(Q) for each i /∈ P ∪Q and (1)

uj(P ) > uj(Q) for each j ∈ P ∩Q. (2)

Proof. Condition (1) is trivial. We show (2). Let P, Q ⊆ N be such that

yP > yQ, and let i ∈ P ∩ Q. Since (yP , (xP
j )j∈P ) is a ratio equilibrium for P ,

Vi

(
y,

v′
i(y

P )∑
j∈P v′

j(y
P )

c(y)
)
is maximized at yP . Hence,

ui(P ) = vi(y
P )− v′i(y

P )∑
j∈P v′j(y

P )
c(yP ) ≥ vi(y

Q)− v′i(y
P )∑

j∈P v′j(y
P )

c(yQ). (3)

Note that since yP > yQ, then
∑

j∈P v′j(y
P ) = c′(yP ) ≥ c′(yQ) =

∑
j∈Q v′j(y

Q).
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Because

v′i(y
P )∑

j∈P v′j(y
P )

− v′i(y
Q)∑

j∈Q v′j(y
Q)

=
v′i(y

P )[
∑

j∈Q v′j(y
Q)]− v′i(y

Q)[
∑

j∈P v′j(y
P )]

[
∑

j∈P v′j(y
P )][

∑
j∈Q v′j(y

Q)]

≤
v′i(y

P )[
∑

j∈P v′j(y
P )]− v′i(y

Q)[
∑

j∈P v′j(y
P )]

[
∑

j∈P v′j(y
P )][

∑
j∈Q v′j(y

Q)]

=
[v′i(y

P )− v′i(y
Q)][

∑
j∈P v′j(y

P )]

[
∑

j∈P v′j(y
P )][

∑
j∈Q v′j(y

Q)]
< 0,

we have
v′i(y

P )∑
j∈P v′j(y

P )
<

v′i(y
Q)∑

j∈Q v′j(y
Q)

. (4)

Therefore, by (3) and (4), ui(P ) = vi(y
P ) − v′i(y

P )∑
j∈P v′j(y

P )
c(yP ) > vi(y

Q) −

v′i(y
Q)∑

j∈Q v′j(y
Q)

c(yQ) = ui(Q). �

Lemma 2 is a basic property of the payoff functions. From Lemma 2, the payoffs

to all agents increase with the level of the public good. This property will play an

important role in showing the main results.

3.2 Nash equilibria and Pareto domination

We introduce two notions of Pareto domination.

Definition 4 A strategy profile s ∈ Sn weakly Pareto-dominates a strategy profile s̃

if Ui(s) ≥ Ui(s̃) for each i ∈ N and Ui(s) > Ui(s̃) for some i ∈ N . Profile s ∈ Sn

strictly Pareto-dominates s̃ if Ui(s) > Ui(s̃) for each i ∈ N .

Lemma 3 provides a sufficient condition for a strategy profile to be Pareto-

dominated by some Nash equilibrium.

Lemma 3 Let s ∈ Sn be a Nash equilibrium. Then, s weakly Pareto-dominates every

ŝ such that P (ŝ) ( P (s). Moreover, s strictly Pareto-dominates ŝ if #[P (s)\P (ŝ)] ≥ 2.
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Proof. By Lemma 1, yP (s) > yP (ŝ). From yP (s) > yP (ŝ), (1), and (2), we obtain

that ui(P (s)) > ui(P (ŝ)) for each i ∈ P (ŝ)∪ [N\P (s)]. From the definition of a Nash

equilibrium and (1), we obtain that ui(P (s)) ≥ ui(P (s)\{i}) ≥ ui(P (ŝ)) for each

i ∈ P (s)\P (ŝ). The second inequality holds strictly if P (ŝ) ( P (s)\{i}. �

4 Main results

Condition 1 (Participation inducements) For each pair P, Q ⊆ N with yP > yQ

and each i ∈ P ∩Q, if ui(Q\{i})− ui(Q) ≥ 0, then ui(P\{i})− ui(P ) > 0.

Here is an interpretation of Condition 1. An increase in the level of the public good

does not change the incentive to participate. For example, let Q ⊆ N and i ∈ Q

such that ui(Q\{i}) ≥ ui(Q). If ui(Q\{i}) > ui(Q), agent i has the incentive to

withdraw from Q and free-ride. Condition 1 says that agent i would also want to

withdraw from every P that produces the public good at a level higher than yQ. If

ui(Q\{i}) = ui(Q), agent i is indifferent between joining and free-riding on Q\{i}.

Agent i gains by not joining if the level of the public good increases. Thus, if an agent

benefits from not participating in providing the public good at level y > 0, this agent

also benefits from not participating in providing the public good of any level higher

than y.

4.1 Characterization of sd coalition-proof equilibria

We show that the set of sd coalition-proof equilibria coincides with the weakly Pareto-

efficient frontier of the set of Nash equilibria.

Proposition 1 In the participation game, under Condition 1, a strategy profile is

an sd coalition-proof equilibrium if and only if it is a Nash equilibrium that is not

strictly Pareto-dominated by any other Nash equilibrium.

Proof. We first show that if s ∈ Sn is a Nash equilibrium that is not strictly Pareto-
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dominated by any other Nash equilibrium, then it is an sd coalition-proof equilibrium.

Assume, on the contrary, that s is not an sd coalition-proof equilibrium. Let D ( N

be a deviating coalition, and s̃D be a profile of deviating strategies of D. Let us

denote s̃ := (s̃D, s−D). Note that s̃D is an sd coalition-proof equilibrium in G|s−D

and ui(P (s̃)) > ui(P (s)) for each i ∈ D. Since s is a Nash equilibrium, then #D ≥ 2.

Claim 1 If yP (s) ≥ yP (s̃), there is a member of D that is worse off after the deviation.

Proof of Claim 1. From Lemma 1, if P (s) ( P (s̃), yP (s) < yP (s̃). Hence, P (s) (

P (s̃) does not hold. There is i ∈ P (s)\P (s̃) or P (s̃) ⊆ P (s). From Lemma 3, if

P (s̃) ⊆ P (s), the deviation byD is not profitable. If i ∈ P (s)\P (s̃) and j ∈ P (s̃)\P (s)

exist, agent j switches from O to I by the deviation of D. The payoff to j before

the deviation is uj(P (s)) = vj(y
P (s)), and the payoff to j after the deviation is

uj(P (s̃)) = vj(y
P (s̃)) −

v′j(y
P (s̃))∑

k∈P (s̃) v
′
k(y

P (s̃))
c(yP (s̃)). Since yP (s) ≥ yP (s̃), we have

vj(y
P (s)) ≥ vj(y

P (s̃)), which, together with
v′j(y

P (s̃))∑
k∈P (s̃) v

′
k(y

P (s̃))
c(yP (s̃)) > 0, implies

uj(P (s)) > uj(P (s̃)). Therefore, agent i is made worse off by the deviation. (End of

Proof of Claim 1)

From Claim 1, if all members of D are better off after the deviation, yP (s̃) > yP (s).

Claim 2 If yP (s̃) > yP (s), then s̃D is not a Nash equilibrium of G|s−D.

Proof of Claim 2. If k ∈ P (s) for each k ∈ P (s̃), then P (s̃) ⊆ P (s), which implies

that yP (s̃) ≤ yP (s). Hence, k /∈ P (s) for some k ∈ P (s̃). Notice that k ∈ D. Since

the deviation by D is improving, uk(P (s̃)) > uk(P (s)). By the definition of a Nash

equilibrium, uk(P (s)) ≥ uk(P (s) ∪ {k}). Thus, uk(P (s̃)) > uk(P (s) ∪ {k}). Since

k ∈ P (s̃), then yP (s̃) > yP (s)∪{k}. Otherwise, uk(P (s̃)) ≤ uk(P (s) ∪ {k}) from (2).

By Condition 1, uk(P (s))−uk(P (s)∪{k}) ≥ 0 implies uk(P (s̃)\{k})−uk(P (s̃)) > 0.

Hence, uk(P (s̃)\{k}) > uk(P (s̃)), which implies that s̃D is not a Nash equilibrium of

G|s−D. (End of Proof of Claim 2)
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From Claims 1 and 2, no coalition can deviate in a self-enforcing and payoff-

improving way. Consequently, every Nash equilibrium that is not strictly Pareto-

dominated by any other Nash equilibrium is an sd coalition-proof equilibrium. By

the definition of an sd coalition-proof equilibrium, no Nash equilibrium that is strictly

Pareto-dominated by an sd coalition-proof equilibrium is coalition-proof. Thus, no

Nash equilibrium that is strictly Pareto dominated by another Nash equilibrium is an

sd coalition-proof equilibrium. �

The intuition that no coalition has a profitable and self-enforcing deviation from

any point in the Pareto-efficient frontier of the set of Nash equilibria is as follows.

From Lemma 2, payoffs are positively correlated with the level of the public good.

Hence, if a coalition deviates in a way that reduces this level, some members of the

coalition are made worse off. This is proved in Claim 1. Therefore, a deviation of a

coalition is profitable if the public good level increases. However, if a coalition deviates

in such a way that the level of the public good increases, an agent j who chooses non-

participation before the deviation needs to join in the deviation and switch from not

participating to participating. From Condition 1, it follows that agent j wants to

switch back to not participating after this coalitional deviation, because the level of

the public good rises. Thus, no deviation that increases the level of the public good

is self-enforcing. This is shown in Claim 2.

From Proposition 1, in the participation game under Condition 1, if there exist

multiple Nash equilibria, one of which strictly Pareto-dominates the others, an sd

coalition-proof equilibrium Pareto-dominates all other Nash equilibria. This does not

apply to all strategic games. In a strategic game with more than two players, the set

of sd coalition-proof equilibria and the set of Pareto-superior Nash equilibria do not

necessarily intersect (Bernheim et al., 1987).
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4.2 Relationship between a Nash equilibrium and a wd coalition-proof equi-

librium

In this subsection, we provide a sufficient condition for a Nash equilibrium to be a wd

coalition-proof equilibrium in the participation game, and we address the question of

which Nash equilibria are wd coalition-proof equilibria.

Definition 5 A Nash equilibrium s ∈ Sn is strict for non-participants if ui(P (s)) >

ui(P (s) ∪ {i}) for each i /∈ P (s).

At a strict Nash equilibrium for non-participants, the participants may be indif-

ferent between participating and not participating, whereas each non-participant is

better off not participating.

Proposition 2 Assume that Condition 1 holds. Every Nash equilibrium that is strict

for non-participants is a wd coalition-proof equilibrium as well as a Nash equilibrium

that is not weakly Pareto-dominated by any other Nash equilibrium.

Proof. The proof of this proposition is very similar to that of Proposition 1. Let s ∈

Sn be a Nash equilibrium that is strict for non-participants. We show by contradiction

that s is a wd coalition-proof equilibrium. Assume that a coalition D ⊆ N deviates

from s by using s̃D ∈ S#D. Denote s̃ := (s̃D, s−D). Notice that (i) s̃D is a wd

coalition-proof equilibrium of G|s−D and (ii) no member of D is made worse off and

at least one member of D is made better off by this deviation.

We can prove, similarly to Claim 1, that yP (s̃) > yP (s). If yP (s̃) > yP (s), then

i ∈ P (s̃)\P (s). By (ii), ui(P (s̃)) ≥ ui(P (s)). Since s is a Nash equilibrium that is

strict for non-participants, ui(P (s)) > ui(P (s)∪{i}). Therefore, ui(P (s̃))−ui(P (s)∪

{i}) > 0, which implies yP (s̃) > yP (s)∪{i}. From Condition 1 and the strictness of

s, it follows that ui(P (s))− ui(P (s) ∪ {i}) > 0 implies ui(P (s̃)\{i})− ui(P (s̃)) > 0.

Thus, ui(P (s̃)\{i}) > ui(P (s̃)). By this inequality, s̃D is not a Nash equilibrium of
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G|s−D, which is a contradiction.

Substituting N for D in the proof above, we show that s is a Nash equilibrium that

is not weakly Pareto-dominated by any other Nash equilibrium. �

The intuition for Proposition 2 is almost the same as that for Proposition 1. The

difference is that in Proposition 2, we must treat joint deviations in which at least

one agent in a coalition is made better off and the others are not made worse off. If a

Nash equilibrium is not strict for non-participants, it may not be a wd coalition-proof

equilibrium for the following reason: let s ∈ Sn denote a Nash equilibrium that is not

strict for non-participants: there exists i /∈ P (s) such that ui(P (s)) = ui(P (s)∪ {i}).

That is, agent i is indifferent between participating and not participating when P (s)

is the set of participants. Then, let j ∈ P (s), and consider a joint deviation by i

and j in which i deviates from not participating to participating and j continues to

participate. After this deviation, i and j receive payoffs ui(P (s)∪{i}) and uj(P (s)∪

{i}), respectively. By Lemma 1, yP (s)∪{i} > yP (s). By (2), uj(P (s)∪{i}) > uj(P (s)).

However, nothing prevents the possibility that uj(P (s)∪{i}) ≥ uj((P (s)∪{i})\{j}).

Therefore, if uj(P (s) ∪ {i}) ≥ uj((P (s) ∪ {i})\{j}), the deviation of {i, j} is self-

enforcing under weak domination.

Definition 6 A strategy profile s ∈ Sn is a strict Nash equilibrium if Ui(si, s−i) >

Ui(s̃i, s−i) for each i ∈ N and each s̃i ∈ S\{si}.

The following corollary is immediate from Proposition 2.

Corollary 1 In the participation game, under Condition 1, every strict Nash equi-

librium is a wd coalition-proof equilibrium.

From Proposition 2, it follows that a Nash equilibrium that is strict for non-

participants is a wd coalition-proof equilibrium. This Nash equilibrium is not weakly

Pareto-dominated by any other Nash equilibrium. Thus, from Proposition 1, it is also

an sd coalition-proof equilibrium. These results mean that under Condition 1, the
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sets of wd and sd coalition-proof equilibria intersect. This phenomenon is noteworthy

since these sets do not intersect in general.

Finally, Propositions 1 and 2 hold as long as Lemmas 1 and 2 are satisfied. There-

fore, the assumption that all agents have quasi-linear preferences does not matter.

An example of a preference domain that satisfies Lemmas 1 and 2 is the symmetric

Cobb-Douglas domain, examined by Saijo and Yamato (1999). On this domain, all

agents have preference relations that are representable by the same Cobb-Douglas

utility function and they have the same endowments of the private good. Refer to

Shinohara (2007) for a detailed discussion.

4.3 Related literature

Yi (1999) studies the relation between the set of sd coalition-proof equilibria and

the weakly Pareto-efficient frontier of the set of Nash equilibria. He focuses on a

class of games in which the strategy space of each player is a subset of the real line

and the payoff to each player depends on the sum of his opponents’ strategies. Our

participation game is in this class only when, designating by 1 and 0 participation

and non-participation, ui(P (si, s−i)) = ui(P (si, s̃−i)) for each i ∈ N , each si ∈ {0, 1},

and each pair s−i, s̃−i ∈ {0, 1}n−1 with
∑

j 6=i sj =
∑

j 6=i s̃j . This condition means

that the payoffs to all players depend on the number of participants and not on their

identities. It is satisfied only when the preferences are the same. Since our model

allows preferences to differ, Yi (1999)’s results cannot be applied to our model to

characterize the set of sd coalition-proof equilibria.

Thoron (1998) examines the wd coalition-proof equilibria of a cartel-formation

game, which is similar to the participation game in a public good provision. In

her game, each firm decides whether or not to join a cartel. Only the firms that join

the cartel follow its agreements, and the other firms behave independently. The main

differences between Thoron (1998) and this paper are as follows. First, Thoron (1998)

assumes that firms are identical, whereas we allow players to differ. Second, the condi-

tion that is satisfied in Thoron (1998)’s model differs from our condition. Conversely,
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our condition (2) in Lemma 2 does not hold in Thoron (1998)’s model. Instead, she

assumes that the cartel members’ payoffs are less than the non-members’ payoffs. In

our model, since we allow players to differ, this assumption does not necessarily hold.

Hence, we cannot use her results to clarify the properties of coalition-proof equilibria

in the participation game.

Furusawa and Konishi (2009) study a participation game that is similar to ours.

They examine the relationship between the wd coalition-proof equilibrium and the

free-riding-proof core. Let T be a coalition. Suppose that T produces the public

good. If agent i ∈ T withdraws from T , i benefits from the public good produced by

T\{i}. A free-riding-proof allocation for T is an allocation such that no member of

T gains by withdrawing from T . It is assumed that if a coalition deviates from some

allocation, it takes its free-riding-proof allocation. The free-riding-proof core is the

set of all free-riding-proof allocations from which no coalition deviates by taking its

free-riding-proof allocations. Furusawa and Konishi (2009) show that the set of wd

coalition-proof equilibrium allocations coincides with the free-riding-proof core. They

do not examine sd coalition-proof equilibria. In order to identify the wd coalition-

proof equilibria, they focus on the core-based solution. However, we focus on Nash

equilibria.

5 Application of the main results

Applying Propositions 1 and 2, we characterize the sets of wd and sd coalition-proof

equilibria when vi(y) = αi
√
y, where αi > 0 for each i ∈ N and c(y) = y.

Let P ⊆ N . Then, yP =

(∑
j∈P αj

2

)2

. The payoff functions are as follows:

ui(P ) =


αi(

∑
j∈P αj)

4
if i ∈ P, and

αi(
∑

j∈P αj)

2
if i /∈ P.

(5)

From (5), it follows that
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ui(P\{i})− ui(P ) =
αi(

∑
j∈P\{i} αj − αi)

4
Q 0 if

∑
j∈P\{i}

αj Q αi. (6)

From (6), the Nash-equilibrium sets of participants are characterized as follows:

Lemma 4 A set of participants P ⊆ N is a Nash-equilibrium set of participants in

the participation game if and only if (i)
∑

j∈P\{i} αj ≤ αi for each i ∈ P and (ii)∑
j∈P αj ≥ αi for each i /∈ P .

Lemma 5 Let n ≥ 2. There is no Nash equilibrium in which more than two agents

participate.

Proof. Assume by contradiction that there is a Nash equilibrium in which P with

#P ≥ 3 is the set of participants. Then, αi ≥
∑

j∈P\{i} αj for each i ∈ P . Summing

up these inequalities over i ∈ P yields
∑

i∈P αi ≥
∑

i∈P

∑
j∈P\{i} αj = (#P −

1)
∑

i∈P αi. However, since #P ≥ 3,
∑

i∈P αi < (#P − 1)
∑

i∈P αi. This is a

contradiction. �

Proposition 3 In the participation game with n ≥ 3, there exists a Nash equilibrium

that is strict for non-participants.

Proof. First, suppose that argmaxl∈N αl is a singleton. Let {i} = argmaxl∈N αl.

From (6), {i} is supported at a Nash equilibrium at which uj({i}) > uj({i, j}) for

each j ∈ N\{i}. Second, suppose that argmaxl∈N αl is not a singleton. Let {i, j} ⊆

argmaxl∈N αl. From (6), {i, j} is attained at a Nash equilibrium at which uk({i, j}) >

uk({i, j, k}) for each k ∈ N\{i, j}. Therefore, there is a Nash equilibrium that is strict

for non-participants. �

When vi(y) = αi
√
y with αi > 0 and c(y) = y, Condition 1 is satisfied. Let P, Q ⊆

N with yP > yQ, and let i ∈ P ∩Q. Since yP > yQ, we obtain
∑

j∈P αj >
∑

j∈Q αj ,

which implies
∑

j∈P\{i} αj − αi >
∑

j∈Q\{i} αj − αi. From (6), it follows that if

ui(Q\{i})− ui(Q) ≥ 0, then ui(P\{i})− ui(P ) > 0. Hence, by Propositions 1 and 2,
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(i) a strategy profile is a Nash equilibrium that is not strictly Pareto-dominated by

any other Nash equilibrium if and only if it is an sd coalition-proof equilibrium, and

(ii) there exist sd and wd coalition-proof equilibria.

Finally, using the results in this subsection, we characterize the set of coalition-proof

equilibria in the following example.

Example 1 Let N = {1, 2, 3, 4}, with (α1, α2, α3, α4) = (3, 3, 2, 2). By Lemma 4,

{1}, {2}, {1, 2}, and {3, 4} are supported at Nash equilibria. Table 1 represents the

payoffs at Nash equilibria. This table shows that no Nash equilibrium dominates any

other Nash equilibrium in the sense of strict Pareto domination. Hence, these four

sets of participants can be supported at sd coalition-proof equilibria. Since {1, 2} and

{3, 4} are attained at strict Nash equilibria for non-participants, they are supported

at wd coalition-proof equilibria. Sets {1} and {2} are not supported at wd coalition-

proof equilibria.

〈Insert Table 1 here〉

If n = 4, we need to consider one-agent games, two-agent games, three-agent games,

and the whole game, in that order. Since there exist four one-agent coalitions, six

two-agent coalitions, and four three-agent coalitions, it is time-consuming to identify

the set of coalition-proof equilibria according to its definition. However, from the

results in this paper, we can characterize the set of coalition-proof equilibria by just

checking Condition 1 and the strictness of Nash equilibria. Therefore, by applying

our results, we can more easily characterize the equilibrium set.

6 Concluding remarks

The definition of a coalition-proof equilibrium is recursive and complicated. There-

fore, in general, it is difficult to identify this equilibrium. This applies to simple games

as well, such as the participation game. This paper clarifies which Nash equilibrium

is coalition-proof in the participation game under Condition 1. Condition 1 may be
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restrictive, and our results may not be applicable to all participation games. The

characterization of coalition-proof equilibria in the participation game without Con-

dition 1 is left for future work.
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Nash-equilibrium

sets of participants

Payoffs Agent 1’s

payoff

agent 2’s

payoff

agent 3’s

payoff

agent 4’s

payoff

{1} 9/4 9/2 3 3

{2} 9/2 9/4 3 3

{1, 2} 9/2 9/2 6 6

{3, 4} 6 6 2 2

Table. 1 Payoff table of Example 1
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