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Abstract

We clarify the properties of a coalition-proof Nash equilibrium in an ag-

gregative game with monotone externality and strategic substitution. In this

aggregative game, since no coalition can deviate from any Nash equilibrium

in self-enforcing and payoff-improving ways, the sets of Nash equilibria and

coalition-proof Nash equilibria coincide. We clarify that the interesting prop-

erties of the coalition-proof Nash equilibrium observed by Yi (1999) and Shi-

nohara (2005) stem from the equivalence between these two equilibria. Other

interesting properties are also based on this equivalence. We examine the re-

lationship between coalition-proofness and restricted coalition formation and

between coalition-proofness and the iterative elimination of weakly dominated

strategies.
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1 Introduction

We clarify the properties of a coalition-proof Nash equilibrium in an aggregative game

with monotone externality and strategic substitution.

The coalition-proof Nash equilibrium introduced by Bernheim et al. (1987) is a

refinement of the Nash equilibrium. The coalition-proof Nash equilibrium is immune
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to any self-enforcing coalitional deviation. The self-enforcing deviation of a coalition

is a deviation from which no proper subcoalition of the coalition can deviate profitably

using its self-enforcing deviation. Hence, in order to define the self-enforcing deviation

of a coalition, the self-enforcing deviation of any proper subset of the coalition must

be defined. Due to the recursive nature of coalition-proof Nash equilibria, it is not

easy to study the properties of the equilibrium.

We focus on an aggregative game with monotone externality and strategic substitu-

tion. The aggregative game is such that the strategy set of any player is a subset of

the real line and the payoff of any player depends on his/her strategy and on the sum

of the strategies of the other players. Monotone externality requires that a switch in

a player’s strategies changes the payoffs of all the other players in the same direction.

Strategic substitution means that an incentive to any player to reduce his/her strategy

is preserved if the sum of the other players’ strategies increases.

In an aggregative game with these conditions, the coalition-proof Nash equilibrium

has interesting properties. The set of coalition-proof Nash equilibria coincides with

the (weakly) Pareto-efficient frontier of the set of Nash equilibria (Yi, 1999). The set

of coalition-proof Nash equilibria based on weak payoff dominance is a subset of the

set of coalition-proof equilibria based on strict payoff dominance (Shinohara, 2005).

These properties are not satisfied in general (Bernheim et al. 1987; Konishi et al.

1999).

First, we show that in the aggregative game, no group of players can deviate from

any Nash equilibrium in such a way that all the players are made better off by using

their self-enforcing deviations. Thus, any Nash equilibrium is coalition-proof and the

set of Nash equilibria itself coincides with the set of coalition-proof Nash equilibria.

The equivalence between these two equilibria implies the results of Yi (1999) and

Shinohara (2005). Therefore, we can say that this equivalence is the fundamental

mechanism for the interesting properties that they report.

On the basis of this equivalence, we can derive the other interesting properties of

the coalition-proof Nash equilibrium.

Second, we address how the coalition-proof Nash equilibrium changes when the

coalition formation is restricted. The original coalition-proof Nash equilibrium as-

sumes that all possible coalitions can form and deviate. However, in the real world,

not all coalitions form for some reason. For example, the coordination of many players

is very costly and it is difficult to form a large coalition; some individuals are unable

to form a coalition because of geographical compulsions; and firms are prohibited to
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form a cartel by law. A coalition communication structure (CCS), introduced by Mil-

grom and Roberts (1996), captures the idea of restricted coalition formation. A CCS

represents which coalition is feasible. A coalition-proof Nash equilibrium under a CCS

is stable against self-enforcing deviations of the coalitions designated by the CCS. The

coalition-proof Nash equilibria are generally different under distinct CCSs. However,

by imposing a natural restriction on the CCS, we show that any Nash equilibrium is

coalition-proof under any CCS and that the sets of coalition-proof Nash equilibria are

the same under any CCS if an aggregative game satisfies monotone externality and

strategic substitution.

Third, we examine the relationship between the coalition-proof Nash equilibrium

and the iterative elimination of weakly dominated strategies. We show that in our

games, if each player’s strategy set is finite, (a) any pure-strategy Nash equilibrium

that consists of serially undominated strategies in the sense of weak domination is a

coalition-proof Nash equilibrium and (b) the serially undominated Nash equilibria do

not Pareto-dominate each other. We also find that these statements do not necessarily

hold true if an aggregative game does not satisfy one of the conditions of monotone

externality and strategic substitution.

The second result shows that the effect of CCS on coalition-proofness when a game

satisfies strategic substitution is different from that when a game satisfies strategic

complementarity. Milgrom and Roberts (1996) show that in a game with strategic

complementarity and monotone externality, some, but not all Nash equilibria are

always coalition-proof for each CCS.

The third result shows that the relationship between the coalition-proofness and the

iterative elimination of weakly dominated strategies is different from that between the

coalition-proofness and the iterative elimination of strictly dominated strategies. The

relationship of the equilibrium with the iterative elimination of strictly dominated

strategies has already been examined by Moreno and Wooders (1996) and Milgrom

and Roberts (1996). Moreno and Wooders (1996) investigate a game with finite

strategy sets and show that if there exists a profile of serially undominated strategies

that Pareto-dominates the other serially undominated strategies, it is a coalition-proof

Nash equilibrium. In contrast, when the iterative elimination of weakly dominated

strategies is adopted, a Pareto-superior serially undominated Nash equilibrium is not

coalition-proof, as demonstrated by our examples. Hence, some conditions need to

be imposed on a game so that a result similar to that of the earlier study holds. Our

result provides such conditions for an aggregative game.
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Our results also provide a sufficient condition under which there is a coalition-proof

Nash equilibrium consisting of undominated strategies. The undominated strategy

is not weakly dominated by any other strategy. Obviously, the surviving coalition-

proof Nash equilibrium consists of undominated strategies. As Peleg (1997) points

out, a coalition-proof Nash equilibrium may consist of weakly dominated strategies.

He also proves that almost all dominant-strategy equilibria are coalition-proof; thus,

such equilibria consist of undominated strategies. In our class of games, a dominant-

strategy equilibrium does not necessarily exist.

2 Model

We consider a strategic game G = [N, (Xi)i∈N , (ui)i∈N ]. Let N = {1, 2, . . . , n} be a

finite set of players. For each i ∈ N , let Xi be the set of strategies of player i such that

Xi ⊆ R and let ui :
∏

j∈N Xj → R be the payoff function of player i. Let S ⊆ N be

a coalition. Let XS ≡
∏

i∈S Xi. Denote xS ≡ (xi)i∈S ∈ XS . The complement of S is

denoted by −S. For notational simplicity, denote X ≡
∏

j∈N Xj , x ≡ (xj)j∈N ∈ X,

X−i ≡ X−{i}, and x−i ≡ x−{i} for each i ∈ N .

We focus on an aggregative game. In this game, the payoff of any player depends

on his/her strategy and on the sum of the strategies of the other players.

Definition 1 A game G = [N, (Xi)i∈N , (ui)i∈N ] is an aggregative game if

ui(xi, x−i) = ui(xi, x
′
−i) for each i ∈ N , each xi ∈ Xi, and each pair x−i, x

′
−i ∈ X−i

such that
∑

j 6=i xj =
∑

j 6=i x
′
j .

We focus on the case in which any player chooses only pure strategies.

The (pure-strategy) Nash equilibrium is defined as usual. Let NE(G) be the set of

(pure-strategy) Nash equilibria in G.

To define a coalition-proof Nash equilibrium, we introduce a restricted game. The

restricted game is defined for each coalition and for each profile of strategies outside

the coalition. For each S ⊆ N and each x−S ∈ X−S , the game restricted by x−S is

denoted by G|x−S = [S, (Xi)i∈S , (ũi)i∈S ], in which S is the set of players, Xi is the

set of strategies for i ∈ S, and ũi : XS → R is the payoff function of i ∈ S which is

defined as ũi(xS) = ui(xS , x−S) for each xS ∈ XS .

Definition 2 A coalition-proof Nash equilibrium x ∈ X is defined inductively with

respect to the number of members in coalitions:
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1. For each i ∈ N , xi is a coalition-proof Nash equilibrium of G|x−i if xi ∈
argmaxx′

i∈Xi
ui(x

′
i, x−i).

2. Let S be a coalition with #S ≥ 2. Assume that the coalition-proof Nash

equilibria have been defined for each proper subset of S. Then, xS is a coalition-

proof Nash equilibrium of G|x−S if

(a) xS is a self-enforcing strategy profile of G|x−S ; xT is a coalition-proof Nash

equilibrium of G|x−T for each T ( S and

(b) there is no self-enforcing strategy profile yS of G|x−S such that

ui(yS , x−S) > ui(xS , x−S) for each i ∈ S.

The set of coalition-proof Nash equilibria in G is denoted by CPNE(G). For each

S ⊆ N and each x−S ∈ X−S , the set of coalition-proof Nash equilibria in the restricted

game G|x−S is also denoted by CPNE(G|x−S). Similarly, the set of Nash equilibria

in the restricted game G|x−S is denoted by NE(G|x−S).

In the coalition-proof Nash equilibrium of G, no proper coalition of N can de-

viate in such a way that the coalition uses the coalition-proof Nash equilibrium of

its corresponding restricted game and all members of the coalition are made better

off. Clearly, CPNE(G|x−S) ⊆ NE(G|x−S) for each non-empty S ⊆ N and each

x−S ∈ X−S .

3 Properties of Coalition-proof Nash Equilibrium

Definition 3 A game G satisfies monotone externality if either positive externality

or negative externality is satisfied:

Positive externality. For each i ∈ N , for each xi ∈ Xi, and for each pair x−i,

x̂−i ∈ X−i, if
∑

j 6=i xj >
∑

j 6=i x̂j , then ui(xi, x−i) ≥ ui(xi, x̂−i).

Negative externality. For each i ∈ N , for each xi ∈ Xi, and for each pair x−i,

x̂−i ∈ X−i, if
∑

j 6=i xj >
∑

j 6=i x̂j , then ui(xi, x−i) ≤ ui(xi, x̂−i).

The condition of monotone externality requires that the payoff to player i changes

monotonically with respect to the strategies of players other than i. The Cournot

competition game is an example that satisfies negative externality; the voluntary

provision game of a pure public good is an example that satisfies positive externality.
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Definition 4 A game G satisfies strategic substitution if for each i ∈ N , each pair

xi, x′
i with xi > x′

i, and each pair x−i, x′
−i with

∑
j 6=i xj >

∑
j 6=i x

′
j , if ui(x

′
i, x

′
−i)−

ui(xi, x
′
−i) ≥ 0, then ui(x

′
i, x−i)− ui(xi, x−i) > 0.

Here is an interpretation for the strategic substitution. Consider a situation in which

player i does not have an incentive to choose xi instead of x′
i when the other players

choose x′
−i. Even if the other players increase their strategies from x′

−i, i does not

have such an incentive.1 Strategic substitution is satisfied by many games such as the

Cournot competition game and the voluntary provision game of a pure public good.2

3.1 Equivalence between Nash Equilibria and Coalition-proof Nash Equilib-

ria

The property presented in Lemma 1 is fundamental to clarify the characteristics of a

coalition-proof Nash equilibrium.

Lemma 1 Suppose that an aggregative game G satisfies monotone externality and

strategic substitution. For each x ∈ NE(G), each non-empty S ⊆ N , and each

x̃S ∈ XS , if ui(x̃S , x−S) > ui(x) for each i ∈ S, x̃S is not a Nash equilibrium of

G|x−S .

Proof. We provide the proof in a case in which positive externality is satisfied.

Similarly, we can show the statement in the case of negative externality.

By the definition of Nash equilibria and positive externality, if
∑

j 6=S\{i} x̃j ≤∑
j 6=S\{i} xj for some i ∈ S, ui(x) ≥ ui(x̃i, x−i) ≥ ui(x̃i, x̃S\{i}, x−S). This con-

tradicts ui(x̃S , x−S) > ui(x). Therefore,
∑

j 6=S\{i} x̃j >
∑

j 6=S\{i} xj for each i ∈ S.

By
∑

j 6=S\{i} x̃j >
∑

j 6=S\{i} xj for each i ∈ S, we have
∑

j∈S x̃j >
∑

j∈S xj . Hence,

there exists k ∈ S such that x̃k > xk. Since x̃k > xk,
∑

j 6=S\{k} x̃j >
∑

j 6=S\{k} xj , and

uk(xk, x−k)−uk(x̃k, x−k) ≥ 0, we have uk(xk, x̃S\{k}, x−S)−uk(x̃k, x̃S\{k}, x−S) > 0

by strategic substitution. Hence, x̃S /∈ NE(G|x−S). �

1 Strictly speaking, strategic substitution in Definition 4 is weaker than that defined by Yi (1999),
which is defined as follows: for each i ∈ N , each pair xi, x

′
i, and each pair x−i, x

′
−i, if xi > x′

i

and
∑

j 6=i xj >
∑

j 6=i x
′
j , then ui(x

′
i, x−i) − ui(xi, x−i) > ui(x

′
i, x

′
−i) − ui(xi, x

′
−i). While

Yi’s (1999) condition implies ours, the converse is not true. Unlike ours, Yi’s (1999) condition
requires that ui(x

′
i, x−i) − ui(xi, x−i) is increasing in x−i for xi > x′

i. This difference does
not matter when proving our results.

2 The other examples that satisfy these two conditions are provided by Yi (1999).
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Lemma 1 says that no coalition, including the grand coalition, can deviate from any

Nash equilibrium in such a way that any member of the coalition is made better off

and the coalitional deviation is self-enforcing. Thus, the set of Nash equilibria itself

coincides with that of coalition-proof Nash equilibria.

Proposition 1 Suppose that G satisfies monotone externality and strategic substitu-

tion. The sets of Nash equilibria and coalition-proof Nash equilibria coincide.

Proof. Clearly, CPNE(G) ⊆ NE(G). By Lemma 1, no coalition can deviate from

any point in NE(G) in self-enforcing and payoff-improving ways. Thus, NE(G) ⊆
CPNE(G). �

The results of Yi (1999) and Shinohara (2005) arrives immediately from Proposition

1. By definition, no coalition-proof Nash equilibrium is Pareto-dominated by any

other coalition-proof Nash equilibrium. Since NE(G) = CPNE(G) by Proposition 1,

NE(G) coincides with the Pareto-efficient frontier of NE(G). Therefore, CPNE(G)

coincides with the Pareto-efficient frontier of NE(G).

There are two definitions of coalition-proof Nash equilibria: a coalition-proof Nash

equilibrium based on weak payoff dominance,3 CPNE% for short, and that based on

strict payoff dominance, CPNE� for short. The CPNE� is defined in Definition 2.

Since the CPNE% is a Nash equilibrium and the sets of CPNE� and Nash equilibria

coincide, the set of CPNE% is included in the set of CPNE�. We can conclude that

the properties observed in earlier studies stem from the equivalence between the Nash

equilibrium and the coalition-proof Nash equilibrium.

Corollary 1 Suppose that an aggregative game satisfies monotone externality and

strategic substitution. (a) The set of coalition-proof Nash equilibria and the Pareto-

efficient frontier of the set of Nash equilibria coincide (Yi, 1999). (b) The set of

CPNE� is a subset of that of CPNE% (Shinohara, 2005).

Remark 1 We consider a case in which the players can use mixed strategies. Even

in this case, NE(G) = CPNE(G) if Xi is a convex set and ui(xi, x−i) is strictly

concave in xi for each i ∈ N . In the game G with convex strategy sets and concave

payoff functions, NE(G) only consists of the pure strategies. For a deviation of a

3 Let S ⊆ N and x−S ∈ X−S . Profile xS ∈ XS weakly payoff dominates x′
S ∈ XS for S at x−S

if ui(xS , x−S) ≥ ui(x
′
S , x−S) for each i ∈ S with strict inequality for at least one i ∈ S.
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coalition to be self-enforcing, any player in the coalition uses a pure strategy through

this deviation. Therefore, NE(G) = CPNE(G).

In the following subsections, we prove that a coalition-proof Nash equilibrium sat-

isfies the two distinct properties that have not been observed by earlier studies. The

statements are made based on Proposition 1 and Lemma 1.

3.2 Coalition-proof Nash Equilibrium under Restricted Coalition Formation

We examine how the coalition-proof Nash equilibrium changes under different restric-

tions on coalition formation in an aggregative game with monotone externality and

strategic substitution.

A coalition communication structure (CCS), introduced by Milgrom and Roberts

(1996), captures the idea of restricted coalition formation. It represents which coali-

tions can communicate to plan deviation. Let σ = (S1, . . . , Sm) (m ≥ 1 and m ∈
Z+) be a finite sequence of coalitions such that S1 ⊆ N and Sr+1 ( Sr for each

r ∈ {1, . . . ,m − 1}. Let Σ be a set of such sequences, called a CCS. Given Σ,

if σ = (S1, . . . , Sm) ∈ Σ, S1 can communicate to deviate from a strategy pro-

file; once S1 has deviated, S2 can plan a further deviation from S1’s deviation,

and so on. For each S ⊆ N , (S) denotes a sequence such that S is the only ele-

ment. For notational simplicity, denote ({i}) by (i) for each i ∈ N . For each pair

σ = (S1, . . . , Sm), σ′ = (T1, . . . , Tr), (σ, σ
′) ≡ (S1, . . . , Sm, T1, . . . , Tr). A sequence σ

is initial in Σ if (σ, σ′) ∈ Σ for some σ′. Let σ be initial in Σ. A CCS induced by

σ, denoted by Σ(σ), is the set of all sequences σ′ such that (σ, σ′) ∈ Σ. Once the

coalitions in σ have deviated, the opportunities for further deviations are denoted by

Σ(σ). We adopt a convention that Σ(σ) = Σ if σ = ∅. Let (G,Σ) be the game with

Σ. Let (G,Σ(σ)) be the game with the induced CCS. Similarly, we can define the

initial sequence in Σ(σ).

Naturally, we assume that any player can freely deviate at any point of the se-

quences: (i) ∈ Σ for each i ∈ N . For each σ = (S1, . . . , Sm) such that m ≥ 1 and

#Sm ≥ 2, if σ is initial in Σ, then (σ, i) ∈ Σ for each i ∈ Sm.

Definition 5 Let Σ be a CCS. A coalition-proof Nash equilibrium in (G,Σ) x ∈ X

is defined along the sequences in Σ:

1. For each i ∈ N , xi is a coalition-proof Nash equilibrium for i at x−i if xi ∈
argmaxx′

i∈Xi
ui(x

′
i, x−i).
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2. Let S ⊆ N be such that #S ≥ 2 and (S) is initial in Σ(σ) for some σ. Assume

that the coalition-proof Nash equilibrium for T at x−T has been defined for

each T ( S such that (T ) is initial in Σ(σ, S). Then, xS is self-enforcing for S

at x−S if xT is coalition-proof for each T ( S at x−T such that (T ) is initial in

Σ(σ, S). Profile xS is a coalition-proof Nash equilibrium for S at x−S if there is

no self-enforcing yS ∈ XS such that ui(yS , x−S) > ui(xS , x−S) for each i ∈ S.

Denote by CPNE(G,Σ) the set of coalition-proof Nash equilibria in (G,Σ). Note

that CPNE(G,Σ) ⊆ NE(G) for each Σ. Let Σ be the CCS that consists of all possible

decreasing sequences of the subsets of N . Then, CPNE(G,Σ) = CPNE(G). Let

Σ = {σ|σ = (i) for some i ∈ N}. Then, CPNE(G,Σ) = NE(G). It is noteworthy

that CPNE(G,Σ) and CPNE(G,Σ′) are not related by inclusion for some Σ and

Σ′. For instance, let Σ be such that σ ∈ Σ if and only if σ = (i) or σ = (N, i) for

some i ∈ N . Then, CPNE(G,Σ) coincides with the Pareto-efficient frontier of the

set of Nash equilibria; CPNE(G,Σ) and CPNE(G,Σ) do not necessarily intersect.

Proposition 2 Suppose that an aggregative game satisfies monotone externality and

strategic substitution. Then, (a) CPNE(G,Σ) = NE(G) = CPNE(G) for each Σ

and (b) CPNE(G,Σ) = CPNE(G,Σ′) for each pair Σ, Σ′.

Proof. By Proposition 1, CPNE(G,Σ) ⊆ NE(G) = CPNE(G) for each Σ. We

show that NE(G) ⊆ CPNE(G,Σ). Suppose that this is not the case. Let x ∈
NE(G)\CPNE(G,Σ). Then, S ⊆ N and x̃S ∈ XS exist such that (S) is initial in

Σ, x̃S is self-enforcing for S, and ui(x̃S , x−S) > ui(x) for each i ∈ S. Since x̃S is self-

enforcing for S at x−S , x̃S ∈ NE(G|x−S). However, by Lemma 1, x̃S /∈ NE(G|x−S).

This is a contradiction. It is immediate from (a) that (b) holds. �

By Proposition 2, the possibility of communication does not affect coalition-proof

outcomes in an aggregative game with the two conditions. For example, consider the

Cournot oligopoly game, which is included in our class of games. Consider a situation

in which firms form a cartel and coordinate their quantities, but only small cartels can

be formed because coordinating many firms is difficult and costly. Our results imply

that the equilibrium outcomes against self-enforcing cartel behavior in this situation

are the same as those in the situation in which all possible coalitions are feasible.

Thus, in the aggregative game, the self-enforcing behavior of cartels leads to the same

outcomes irrespective of how many players can coordinate their strategies together.
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Milgrom and Roberts (1996) examine a coalition-proof Nash equilibrium of a game

with strategic complementarity.4 The game with strategic complementarity has the

largest and smallest elements in a serially undominated set in any order.5 They are the

largest and the smallest Nash equilibria, respectively (Milgrom and Shannon, 1994).

Milgrom and Roberts (1996) show that if the game satisfies the positive externality,

only the largest Nash equilibrium is coalition-proof. They also show that if the game

satisfies negative externality, only the smallest Nash equilibrium is coalition-proof.

Even if a CCS is introduced, the largest or smallest Nash equilibrium is coalition-

proof depending on whether the externality is positive or negative. Their results are

demonstrated by the following example.

Example 1 Let G denote the game depicted in Table 1. We assume that A1 >

A2 and B1 > B2. Strategic complementarity and positive externality are satisfied.

The largest Nash equilibrium is (A1, B1) and the smallest is (A2, B2). The largest

Nash equilibrium is coalition-proof in both (G,Σ) and (G,Σ). The smallest Nash

equilibrium is coalition-proof only in (G,Σ).

Table. 1 Example 1

HHHHH1
2

B1 B2

A1 3, 3 0, 2
A2 2, 0 1, 1

As shown in Example 1, some Nash equilibrium is always coalition-proof for each CCS.

However, not all Nash equilibria are coalition-proof. This is the difference between

the coalition-proof Nash equilibrium in the game with strategic complementarity and

that in the game with strategic substitution.

3.3 Weakly Dominated Strategy and Coalition-proof Nash Equilibrium

In this subsection, we assume that Xi is a finite set for each i ∈ N .6

4 Let G = [N,X, (ui)i∈N ] be a game. Game G satisfies the strategic complementarity if G′ =
[N,X, (−ui)i∈N ] satisfies strategic substitution.

5 A serially undominated set is the set of pure strategies that survive the iterative elimination
of strictly dominated strategies.

6 We briefly mention the case of infinite strategy sets later.

10



Definition 6 Let Yj ⊆ Xj for each j ∈ N . A strategy for i ∈ N , yi ∈ Yi, is a weakly

dominated strategy in
∏

j∈N Yj if there is zi ∈ Yi such that ui(zi, y−i) ≥ ui(yi, y−i)

for each y−i ∈
∏

j 6=i Yj and ui(zi, y−i) > ui(yi, y−i) for at least one y−i ∈
∏

j 6=i Yj . A

strategy yi is an undominated strategy for i in
∏

j∈N Yj if yi is not weakly dominated

by any other strategy in Yi.

We use the weak dominance relation based on pure strategies.7 Note that the weak

dominance relation is transitive8 and asymmetric.9

Definition 7 (Iterated elimination of weakly dominated strategies) Let

X0 ≡
∏

j∈N Xj . For each i ∈ N and each m ∈ Z++, let Xm
i denote the set of

strategies for i such that any xi ∈ Xm−1
i \Xm

i is a weakly dominated strategy in

Xm−1 ≡
∏

j∈N Xm−1
j . Suppose that at least one weakly dominated strategy is

eliminated if weakly dominated strategies exist at any round of elimination. Let X∞

be the set of strategy profiles such that no further strategy can be eliminated for

each player.

For each game G = [N, (Xi)i∈N , (ui)i∈N ], let Gm = [N, (Xm
i )i∈N , (um

i )i∈N ] (m ∈
Z+∪{∞}) denote a game in which the set of strategy profiles isXm and um

i (x) = ui(x)

for each i ∈ N and each x ∈ Xm. Hence, G0 is the original game G and G∞ is the

game in which further elimination of weakly dominated strategies is not possible.

Remark 2 A coalition-proof Nash equilibrium may consist of weakly dominated

strategies; therefore, a coalition-proof Nash equilibrium may be eliminated through

the iterative elimination of weak dominated strategies. Peleg (1997) presents the ex-

ample that is shown in Table 2. Profile (A1, B1) is the unique coalition-proof Nash

equilibrium and A1 and B1 are dominated strategies if ci > bi and ai > ci for each

i ∈ {1, 2}. This equilibrium cannot survive the iterative elimination of weakly domi-

nated strategies.

Transitivity and asymmetry, together with finiteness of strategy spaces, imply that

any dominated strategy is dominated by an undominated strategy and any Nash

equilibrium of Gm+1 is also a Nash equilibrium of Gm for each m ∈ Z+.

7 Börgers (1993) provides an interesting justification for pure-strategy weak dominance.
8 For each i ∈ N and for each triplet xi, yi, zi ∈ Yi ⊆ Xi, if xi weakly dominates yi on

∏
j∈N Yj

and yi weakly dominates zi on
∏

j∈N Yj , then xi weakly dominates zi on
∏

j∈N Yj
9 For each pair xi, yi ∈ Yi ⊆ Xi, if xi weakly dominates yi on

∏
j∈N Yj , then yi does not weakly

dominate xi
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Table. 2 Coalition-proof Nash equilibrium consists of weakly dominated strategies

HHHHH1
2

B1 B2

A1 a1, a2 b1, a2
A2 a1, b2 c1, c2

Lemma 2 For each m ∈ Z+, NE(Gm+1) ⊆ NE(Gm).

Proof. Suppose, to the contrary, that there is x ∈ NE(Gm+1)\NE(Gm) for some

m ∈ Z+. There exist i ∈ N and yi ∈ Xm
i \Xm+1

i such that ui(yi, x−i) > ui(x). Let

x′
i ∈ arg max

zi∈Xm
i \Xm+1

i

ui(zi, x−i) − ui(xi, x−i). Since Xm
i \Xm+1

i is finite, x′
i is well-

defined. Since x′
i ∈ Xm

i \Xm+1
i , there is x′′

i ∈ Xm
i that weakly dominates x′

i. By the

definition of x′
i, ui(x

′′
i , x−i) = ui(x

′
i, x−i). Since x ∈ NE(Gm+1), x′′

i /∈ Xm+1
i . Thus,

x′′
i is weakly dominated by some x′′′

i ∈ Xm
i and ui(x

′′′
i , x−i) ≥ ui(x

′′
i , x−i) > ui(x). By

the definition of Nash equilibria, x′′′
i ∈ Xm

i \Xm+1
i . Along this way, since Xm

i \Xm+1
i

is finite, there is x̄i ∈ Xm
i \Xm+1

i that is not weakly dominated by any other strategy

in Xm
i \Xm+1

i . However, x̄i is a weakly dominated strategy in Xm. Thus, there is

x̂i ∈ Xm+1
i which weakly dominates x̂i and ui(x) < ui(x̄i, x−i) ≤ ui(x̂i, x−i), which

implies that x /∈ NE(Gm+1). �

Proposition 3 shows that the set of coalition-proof Nash equilibria shrinks or does

not change as the round of elimination proceeds.

Proposition 3 Suppose thatXi is finite for each i ∈ N and that an aggregative game

G satisfies monotone externality and strategic substitution. Then, CPNE(Gm+1) ⊆
CPNE(Gm) for each m ∈ Z+.

Proof. Let m ∈ Z+. Note that Gm and Gm+1 satisfy monotone externality and

strategic substitution. By Lemma 2, NE(Gm+1) ⊆ NE(Gm). By Proposition 1,

NE(Gm+1) = CPNE(Gm+1) and NE(Gm) = CPNE(Gm). �

Monotone externality and strategic substitution play an important role in Propo-

sition 3. As the following examples indicate, if one of these conditions fails, then

CPNE(Gm+1)\CPNE(Gm) 6= ∅ for some m.

12



Example 2 Consider the game in Table 3, which corresponds to the case of a1 =

a2 = 2, b1 = b2 = 0, and c1 = c2 = 1 in Table 2. Let Ak and Bk (k = 1, 2) be such that

Ak, Bk ∈ R, A1 > A2, and B1 > B2. In this case, positive externality is satisfied, but

strategic substitution is not. Clearly, A1 and B1 are dominated strategies. After these

strategies are eliminated, (A2, B2) is the unique coalition-proof Nash equilibrium, but

it is not coalition-proof in the original game.

Table. 3 Example 2

HHHHH1
2

B1 B2

A1 2, 2 0, 2
A2 2, 0 1, 1

Example 3 Consider the game in Table 4, in which A1 < A2 < A3 and B1 < B2 <

B3.

Table. 4 Example 3

HHHHH1
2

B1 B2 B3

A1 0, 40 40, 40 40, 40
A2 10, 41 45, 40 40, 35
A3 20, 38 50, 30 40, 20

Because

u1(A1, B3)− u1(A3, B3) = 0 > u1(A1, B2)− u1(A3, B2) = −10

> u1(A1, B1)− u1(A3, B1) = −20,

u1(A1, B3)− u1(A2, B3) = 0 > u1(A1, B2)− u1(A2, B2) = −5

> u1(A1, B1)− u1(A3, B1) = −10, and

u1(A2, B3)− u1(A3, B3) = 0 > u1(A2, B2)− u1(A3, B2) = −5

> u1(A2, B1)− u1(A3, B1) = −10,
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and

u2(A3, B1)− u2(A3, B2) = 8 > u2(A2, B1)− u2(A2, B2) = 1

> u2(A1, B3)− u2(A1, B3) = 0,

u2(A3, B1)− u2(A3, B3) = 18 > u2(A2, B1)− u2(A2, B3) = 6

> u2(A1, B1)− u2(A2, B3) = 0, and

u2(A3, B2)− u2(A3, B3) = 10 > u2(A2, B2)− u2(A2, B3) = 5

> u2(A1, B2)− u2(A1, B3) = 0,

strategic substitution is satisfied. However, since u1(A2, B1) < u1(A2, B2) and

u1(A2, B1) < u1(A2, B2), monotone externality is not satisfied. Profile (A1, B3) is the

only coalition-proof Nash equilibrium, but it consists of weakly dominated strategies.

Strategies A2 and B2 are also weakly dominated strategies. After the elimination of

A2, A3, B2, and B3, the only surviving strategy profile is (A3, B1), which is trivially

a coalition-proof Nash equilibrium. However, it is not coalition-proof in the original

game.

A game is dominance solvable in the sense of weak domination if X∞ consists of

only one element.

Corollary 2 Suppose that an aggregative game G satisfies monotone externality and

strategic substitution and that Xi is finite for each i ∈ N . (a) Whenever G∞ has a

pure-strategy Nash equilibrium, G has a coalition-proof Nash equilibrium that is

not eliminated by iterative weak dominance. (b) If G is dominance solvable, the

unique surviving strategy profile is a coalition-proof Nash equilibrium in G. (c) Nash

equilibria of G∞ do not Pareto-dominate each other.

Proof. By Propositions 1 and 3, (a) is satisfied. The direct application of (a) leads

to (b). By Proposition 1 and the definition of coalition-proof Nash equilibria, (c)

holds. �

Corollary 2 shows that the relationship between coalition-proofness and the iterative

elimination of weakly dominated strategies is different from that between coalition-

proofness and the iterative elimination of strictly dominated strategies. Moreno and

Wooders (1996) examine the relationship between the coalition-proof Nash equilib-

rium and the iterative elimination of strictly dominated strategies. They treat a game
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with finite strategy sets and show that if there exists a profile of serially undominated

strategies that Pareto-dominates all the other serially undominated strategies, then it

is a coalition-proof Nash equilibrium. Milgrom and Roberts (1996) extend their result

to a game with infinite strategy spaces under the condition of strategic complemen-

tarity. These two papers also show that a profile of serially undominated strategies

is the only coalition-proof Nash equilibrium in a dominance solvable game.

However, when we adopt weakly domination, serially undominated strategy profiles

are not necessarily coalition-proof. The difference between iterative weak domination

and iterative strict domination is prominent in dominance solvable games. While the

unique profile of serially undominated strategies is a coalition-proof Nash equilibrium

when iterative strict dominance is analyzed, this is not necessarily true when iterative

weak dominance is considered. In Example 2, (A2, B2) is the unique strategy profile

that consists of serially undominated strategies in the sense of weak domination, but

it is not coalition-proof. This also applies to Example 3. In general, Pareto-superior

serially undominated Nash equilibrium is not coalition-proof if an aggregative game

fails to satisfy monotone externality or strategic substitution. Corollary 2 presents a

sufficient condition for an aggregative game under which some serially undominated

strategy profile in the sense of weak domination is coalition-proof, analogous to the

iterative elimination of strictly dominated strategies.

Finally, we make several remarks. The first is related to the assumption of finite

strategy spaces. This assumption is used only in the proof of Lemma 2. The as-

sumption guarantees that any weakly dominated strategy is weakly dominated by an

undominated strategy. By this property, any Nash equilibrium of Gm+1 is also a

Nash equilibrium of Gm for each m. However, when the strategy sets are infinite, a

strategy may be weakly dominated by another strategy that is weakly dominated by

another weakly dominated strategy, and so on. Due to such an infinite sequence of

dominance relations, a Nash equilibrium of Gm+1 may not be that of Gm for some

m; hence, our main results may not hold in the case of infinite strategy spaces. How-

ever, results similar to our earlier results can be obtained even in the case of infinite

strategy spaces if only the strategy that is weakly dominated by an undominated

strategy is eliminated. Under this iterative dominance concept, since any eliminated

strategy is weakly dominated by an undominated strategy, NE(Gm+1) ⊆ NE(Gm)

for each m.

Second, even if the aggregative game satisfies monotone externality and strategic

substitution, not all coalition-proof Nash equilibria survive the iterative elimination
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of weakly dominated strategies. The following example illustrates this.

Example 4 Consider the game in Table 5, in which A1 > A2 and B1 > B2. Since

u1(x1, B1) < u1(x1, B2) for each x1 ∈ {A1, A2} and u2(A1, x2) < u2(A2, x2) for

each x2 ∈ {B1, B2}, negative externality holds. Since u1(A2, B1) − u1(A1, B1) >

u1(A2, B2)− u1(A1, B2) = 0 and u2(A2, B2) < u2(A2, B1), strategic substitution also

holds. Profiles (A2, B1) and (A1, B2) are coalition-proof. However, A1 and B2 are

both weakly dominated strategies. Hence, while (A1, B2) is eliminated, (A2, B1)

survives.

Table. 5 Example 4

HHHHH1
2

B1 B2

A1 −3, 0 0, 0
A2 −2, 2 0, 1

Third, since the iterative elimination of weakly dominated strategies is an order-

dependent procedure, it may seem insignificant to examine the relationship between

coalition-proofness and the elimination of weakly dominated strategies. However,

our results can be applied to an order-independent procedure which is proposed by

Marx and Swinkels (1997) and Marx (1999), called the elimination of nicely weakly

dominated strategies. For each i ∈ N and each pair xi, x′
i ∈ Xi, xi nicely weakly

dominates x′
i on X if xi weakly dominates x′

i on X and for each x−i ∈ X−i, if

ui(xi, x−i) = ui(x
′
i, x−i), then uj(xi, x−i) = uj(x

′
i, x−i) for each j ∈ N . The concept

of nice weak dominance is also defined for Y ⊆ X. Eliminating the nicely weakly

dominated strategies, we can construct a sequence of games {Gm}∞m=0 as in the

standard iterative weak domination. Note that if xi nicely weakly dominates x′
i,

then xi weakly dominates x′
i. Thus, together with the finiteness of strategy sets,

NE(Gm+1) ⊆ NE(Gm) for each m ∈ Z+. By using Lemma 1, we can show that

CPNE(Gm+1) ⊆ CPNE(Gm) for each m under monotone externality and strategic

substitution.
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4 Concluding Remarks

We investigate a coalition-proof Nash equilibrium of an aggregative game with mono-

tone externality and strategic substitution. Due to the recursive nature of the equi-

librium, it is difficult to examine which properties are satisfied by the coalition-proof

Nash equilibrium even in a restricted class of games such as aggregative games.

We show that in the aggregative game with monotone externality and strategic sub-

stitution, the set of coalition-proof Nash equilibria coincide with the set of Nash equi-

libria. The equivalence of Nash equilibria and coalition-proof Nash equilibria implies

the results of Yi (1999) and Shinohara (2005). We can conclude that this equivalence

is the fundamental mechanism for the interesting properties of the coalition-proof

Nash equilibrium reported by Yi (1999) and Shinohara (2005).

In the aggregative game, the coalition-proof Nash equilibrium is shown to have

other interesting properties. We show that (a) the coalition-proof Nash equilibrium

always assigns the same strategy under any admissible CCS and (b) some coalition-

proof Nash equilibria, but not all, survive the iterative elimination of weak dominated

strategies. Outside our class of games, (a) and (b) are not necessarily observed. The

equivalence between Nash equilibria and coalition-proof Nash equilibria also underlies

these results. As a result of our analyses, we can conclude that the various interesting

properties of coalition-proof Nash equilibrium are based on the equivalence of the two

equilibria.

Since the strategy set is a subset of the real line and the payoff of any agent

depends not on the composition of the others’ strategies but on the sum of them in

the aggregative game, our analysis may appear restrictive. Whether the properties of

the coalition-proof Nash equilibrium hold or not under more general strategy spaces

or without the aggregative nature is left for future work.
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