Appendix: Proofs

Proof of Lemma 1.

We obtain (2) since $\underline{b}=b_{M}-d / 2$ by the uniform population distribution on \mathcal{B} and

$$
\frac{b_{M}}{1+\beta}-\underline{b} \gtreqless 0 \text { if } d \gtreqless \frac{2 \beta b_{M}}{1+\beta} .
$$

Proof of Lemma 2.
Regarding (3), we find that $a_{M}-d b_{M} /(1+\beta) \geq \underline{a}$ if and only if $d \leq(1+\beta) / 2 b_{M}$ since $\underline{a}=a_{M}-1 / 2$ by the uniform population distribution on \mathcal{A}. For (4), since $\underline{a}=a_{M}-1 / 2$ and $\underline{b}=b_{M}-d / 2$, we find that $a_{M}-d \underline{b} \geq \underline{a}$ if and only if $d^{2}-2 b_{M} d+1 \geq 0$, which is equivalent to $d \geq b_{M}+\sqrt{b_{M}^{2}-1}$ or $d \leq b_{M}-\sqrt{b_{M}^{2}-1}$.

Proof of Proposition 1.
(i) By $b_{M} \leq(1+\beta) /(2 \sqrt{\beta})$ and (5),

$$
\frac{2 b_{M} \beta}{1+\beta} \leq \frac{1+\beta}{2 b_{M}}
$$

In addition, if $1 \leq b_{M} \leq(1+\beta) /(2 \sqrt{\beta})$, then

$$
\frac{2 b_{M} \beta}{1+\beta} \leq b_{M}-\sqrt{b_{M}^{2}-1}
$$

By Lemmas 1 and 2 and the last inequality, $a_{R}\left(a_{M}, \underline{b}\right)=a_{M}-d \underline{b}$ if $d \leq 2 \beta b_{M} /(1+$ β). Using these lemmas, we illustrate the optimal representatives for the median residents in Figure 2. From this figure, we obtain $\left(a_{R}^{*}, b_{R}^{*}\right)$ in (6).

Fig. 2 Case (i)
(ii) Since $b_{M}>(1+\beta) /(2 \sqrt{\beta})(\geq 1)$,

$$
\begin{equation*}
\frac{1+\beta}{2 b_{M}}<\frac{2 b_{M} \beta}{1+\beta} \text { and } b_{M}-\sqrt{b_{M}^{2}-1}<\frac{2 b_{M} \beta}{1+\beta}<b_{M}+\sqrt{b_{M}^{2}-1} \tag{11}
\end{equation*}
$$

The first condition holds by (5), and the second one can be derived by simple calculation. Using these conditions and Lemmas 1 and 2, we illustrate the optimal representatives for the median residents in Figure 3. From this figure, we obtain $\left(a_{R}^{*}, b_{R}^{*}\right)$ in (7).

Fig. 3 Case (ii)

Proof of Proposition 2.
Suppose that (8) or (9). By (6) and (7), $x^{N B *}=\underline{a}+d b_{M} /(1+\beta)$. Since $\underline{a}=a_{M}-1 / 2$,

$$
x^{N B *}-x^{D *}=\underline{a}+\frac{d b_{M}}{1+\beta}-a_{M}=\frac{2 d b_{M}-(1+\beta)}{2(1+\beta)}>0 \text { if } d>\frac{1+\beta}{2 b_{M}} .
$$

$d>(1+\beta) /\left(2 b_{M}\right)$ holds by (8). This result also holds if (9) holds since $d>2 b_{M} \beta /(1+\beta)$ implies that $d>(1+\beta) /\left(2 b_{M}\right)$ when $b_{M}>(1+\beta) /(2 \sqrt{\beta})$ by (5).

Suppose that (10). By (7), $x^{N B *}=\underline{a}+d \underline{b} . \operatorname{By} \underline{a}=a_{M}-1 / 2$ and $\underline{b}=b_{M}-d / 2$, $x^{N B *}-x^{D *}=\underline{a}+d \underline{b}-a_{M}=-\frac{d^{2}-2 b_{M} d+1}{2}>0$ if $b_{M}-\sqrt{b_{M}^{2}-1}<d<b_{M}+\sqrt{b_{M}^{2}-1}$. For each $d>0$, if d satisfies $b_{M}-\sqrt{b_{M}^{2}-1}<d \leq 2 b_{M} \beta /(1+\beta)$, then it satisfies $b_{M}-\sqrt{b_{M}^{2}-1}<d<b_{M}+\sqrt{b_{M}^{2}-1}$ because $b_{M}+\sqrt{b_{M}^{2}-1}>2 b_{M} \beta /(1+\beta)$ by (11).

