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Abstract

We examine the strategic delegation problem in the context of interregional negotiations un-
der the subsidy policies of a central government. It is well known that when such negotiations
are delegated to representatives, each region in a country elects its representative strategically,
resulting in inefficient negotiation outcomes. This study focuses on a common subsidy policy
called a cost-matching grant to examine whether an optimal grant exists that restores the ef-
ficiency of negotiation outcomes. Our results show that the central government obtains this
optimal grant if the manipulability of the negotiation breakdown outcome is sufficiently weak.
The strength of the manipulability is important because introducing a grant generates a new
kind of manipulation of negotiation breakdown outcomes. However, when a new representa-
tive is elected after a negotiation breaks down, the new manipulability is negated. Hence, the
central government always obtains the optimal cost-matching grant.

Keywords Strategic delegation; Median voter theorem; Cost-matching grant; Lindahl price;
Nash bargaining.
JEL classifications D62, D72, H41, H77.

1 Introduction
We examine the strategic delegation problem in the context of interregional negotiations under a
government subsidy policy. Prior studies have found that in the absence of a government subsidy,
negotiations are distorted by strategic delegation, such that efficiency is not achieved. Here, we
examine whether the strategic delegation problem is mitigated or worsened under a government
subsidy policy.

In the real world, although decisions on public projects with spillovers may be delegated to the
regional level, the central government does not directly implement the projects. Instead, the rele-
vant regions receive subsidies and cooperate voluntarily to carry out these projects. For instance,
to maintain an international river (e.g., to reduce pollution and prevent floods), the countries in
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the river basin may establish joint projects.1 At the same time, a supranational political organiza-
tion (e.g., the European Union (EU)) may offer grant schemes to assist with cooperation between
relevant countries. For example, Belgium, France, Germany, Luxembourg, and the Netherlands es-
tablished a joint program to reduce the problems caused by high-water and flooding along the Rhine
and Meuse Rivers. The program was funded as the “Interreg Rhine Meuse Activities” (INTERREG
IIc) by the European Commission.2 In addition, Germany and the Netherlands established the sus-
tainable development of floodplains (SDF) project along the Rhine River, funded by the European
INTERREG IIIb program (Nijland, 2005).3 Indirect control of a project through central government
subsidies is characteristic of federal countries and political unions such as the EU, because authority
is sometimes delegated to the state level.4

We build a game-theoretic model of the aforementioned situation in the context of strategic del-
egation; that is, the central government does not directly implement a project, and project decisions
are assigned to the relevant regions. Themodel contains a country comprising two regions (Regions
AandB). The regions have asymmetric roles. Only regionAundertakes a public project that benefits
both regions, and regionBmakesmonetary transfers to regionA as compensation. This captures the
relation between upstream and downstream countries along an international river. Representatives
are elected from among the residents throughmajority voting in each region. These representatives
then negotiate the project level and transfers. If the negotiation breaks down, region A’s represen-
tative independently decides the project level, and region B free rides. Prior to the election of the
representatives and the negotiation, an upper-tier government of the regions (hereafter, the central
government) establishes a cost-matching grant for the project in region A. Under the grant, a certain
rate of region A’s project cost is subsidized by the central government, and the subsidy is financed
by a tax on region B.

It is well known that negotiation plays the role of internalizing an externality between the parties
involved and, thus, improves allocative efficiency, according to the Coase theorem (Coase, 1960).
However, when a representative negotiates on behalf of a party, the negotiation does not work suf-
ficiently to achieve efficiency because the representative is elected strategically by the party to im-
prove its bargaining position. Consequently, the bargaining outcome is Pareto inefficient and, in
some cases, even Pareto-inferior to the outcome without negotiations. This is known as the strate-
gic delegation problem (e.g., Segendorff, 1998; Besley and Coate, 2003; Buchholz et al., 2005; Dur
and Roelfsema, 2005; Loeper, 2017; Cheikbossian, 2016). In our situation of an asymmetric role
between regions, it has been shown that without a central government subsidy policy, the project
does not reach the first-best efficient level, even through negotiation (e.g., Gradstein, 2004; Rota-
Graziosi, 2009; Loeper, 2015; Shinohara, 2018). Thus, we examine the effects of strategic delegation
on project efficiency in the context of government subsidy policies.

Our main finding is the possibility of achieving efficiency using a cost-matching grant, as sum-
marized in Theorem 1. Theorem 1 states that a grant achieves efficiency if and only if (i) the cost-
matching rate is based on the Lindahl price, and (ii) the manipulability of the negotiation break-
down outcome is sufficiently weak. The theorem shows an interesting property that the central
government can obtain an optimal grant, conditional on the strength of the manipulability of the
breakdown outcome. In our model, the project level is decided independently by region A’s rep-
resentative when the negotiation breaks down. Thus, the breakdown level can be manipulated by
the choice of region A’s representative. As we discuss in Section 3.2.2, introducing a grant gener-

1Althoughweuse the terms “country” and “regions,” ourmodel can be applied to the relation between a supranational
organization and its member countries.

2The EU financed 32% of the total investment, or ECU 134.118 million.
Data source: https://ec.europa.eu/regional_policy/archive/reg_prog/po/prog_663.htm

3The EU finances 50% of the total investment, or EUR 17.749 million.
Data Source: https://keep.eu/projects/1244/

4There is similar evidence in Japan, where some river maintenance projects are delegated to the local level. In this
case, an upstream government will negotiate the cost-share with the downstream governments. At the same time, the
central government subsidizes part of the upstreamgovernment’s project cost; see Kobayashi and Ishida (2012) for details.

2



ates a new kind of manipulation of the negotiation breakdown outcomes. Therefore, the existence
of an optimal grant is linked to the manipulability of the breakdown outcome. Prior studies have
discussed how this manipulability is a major source of strategic delegation (e.g., Segendorff, 1998;
Gradstein, 2004). However, this differs from our new manipulability.

We also show that the manipulability of the breakdown outcome does not matter if a new rep-
resentative who only decides the breakdown outcome is elected after a negotiation breaks down.
Thus, the election after the negotiation breaks down separates the responsibility for the negotiation
and that for the decision of the breakdown outcome. By this separation, the cost-matching rate
based on the Lindahl price always leads to the first-best efficient level (see Proposition 3). We also
consider the cost-matching grant without the Lindahl price. As discussed in Section 3.4, if the grant
is not based on the Lindahl price, then the equilibrium outcome with negotiations may be Pareto-
inferior to that without negotiations. This indicates that a nonoptimal grant maymake the strategic
delegation more serious in combination with the negotiation.

Our theoretical analysis includes policy implications on combinations of policy instruments and
voluntary negotiations. Several theoretical studies have shown that government interventions using
subsidies and taxes may improve the efficiency of negotiation outcomes when the negotiation itself
does not reach the first-best efficient level (in situations different to ours) (e.g., Lülfesmann, 2002;
Lüelfesmann et al., 2015; Rosenkranz and Schmitz, 2007; and MacKenzie and Ohndorf, 2016). For
the strategic delegation problem, we observe similar phenomena, conditional on themanipulability
of the breakdown outcome. Thus, for the government, setting the cost-matching rate appropriately
and coordinating the degree of the breakdown manipulability are important to restoring efficiency.
Setting the rate using the Lindahl price is important because introducing a cost-matching grant
without the Lindahl price may harm the efficiency of the negotiation outcome. In addition, our
findings suggest that an institutional arrangement that employs a re-election after a negotiation
breaks down plays a role in coordinating the manipulability of the breakdown outcome and en-
hancing the effectiveness of the grant.

Segendorff (1998) and Gradstein (2004) discuss the relationship between the role of a strate-
gic delegation and the manipulability of a breakdown outcome. They show that if a representative
both negotiates and decides the breakdown outcome, then the outcome achieved through an inter-
regional negotiationmay be Pareto-inferior, even to the allocation in the absence of negotiation. On
the other hand, if the representatives are separated, then a negotiated outcome is Pareto-superior
to that without a negotiation. Thus, the welfare-enhancing property of a negotiation depends on
separating the authority for the negotiation and that for the breakdown outcome. In addition, our
results show that this separation influences whether a government subsidy policy reaches the first-
best efficient level.

Eckert (2003) and Buchholz et al. (2013) examine the delegation behavior of federal countries
in the context of providing international public goods. Buchholz et al. (2013) show that the effi-
ciency loss of the negotiation outcome due to the delegation can bemitigated by introducing a fiscal
instrument, including a cost-matching grant, between a public good provider and the beneficiary
of the good in each country in the federation. However, their models differ from ours in that they
do not include selecting a representative using an election. In the literature on strategic delegation
in an election, Dur and Roelfsema (2005) show that a central government subsidy policy, which
differs from a cost-matching grant, eliminates the incentive for a strategic delegation. An important
difference between our work and that of Dur and Roelfsema (2005) lies in the nature of the nego-
tiation. The interregional negotiation of Dur and Roelfsema (2005) is “centralized” (i.e., legislative
bargaining), in that no region can provide public goods independently if a negotiation breaks down.
In contrast, our negotiation is “decentralized,” in that the regions act freely and independently af-
ter a negotiation breaks down. In the centralized negotiation of Dur and Roelfsema (2005), the
manipulation of the breakdown outcome does not matter.

The remainder of this paper is organized as follows. Section 2 introduces the model, and Sec-
tion 3 provides our analysis. Section 4 discusses extensions to our basic model. Lastly, Section 5
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concludes the paper. All proofs are collected in the appendix.

2 The model
Consider two regions (regions A and B) within a country. Each region has a regional government.
The government in region A undertakes a local public project 𝑥 ∈ ℝ+ that benefits both regions A
and B, owing to the spillover effect of the project. The cost function of the public project 𝑥 is given
as 𝑐 ∶ ℝ+ → ℝ+, such that 𝑐(0) = 0, 𝑐′(𝑥) > 0, 𝑐″(𝑥) > 0, lim𝑥→0 𝑐′(𝑥) = 0, and lim𝑥→∞ 𝑐′(𝑥) = ∞.
While region A incurs the cost of the project, region B transfers money to region A, denoted by 𝑇,
as compensation.

Each region is populated with individuals. Residents in region A are symmetrically distributed
over an interval 𝒜 ≡ [𝑎, ̄𝑎] ⊂ ℝ+, where ̄𝑎 − 𝑎 = 𝑛𝐴 > 0. The population density function on 𝒜 is
denoted by 𝑓𝐴, such that region A’s mean ∫𝑎∈𝒜 𝑎𝑓𝐴(𝑎)d𝑎 is denoted by 𝑎𝑀 . Similarly, residents in
region B are symmetrically distributed over ℬ ≡ [𝑏, ̄𝑏] ⊂ ℝ+, where ̄𝑏 − 𝑏 = 𝑛𝐵 > 0, according to
region B’s population density function 𝑓𝐵 , such that region B’s mean ∫𝑏∈ℬ 𝑏𝑓𝐵(𝑏)d𝑏 is denoted by
𝑏𝑀 . Then, 𝑎 ∈ 𝒜 and 𝑏 ∈ ℬ represent the regions’ respective tastes for the public project, which
we explain in detail later. We do not impose a relative relation between 𝒜 and ℬ. Because the
population distributions of both regions are symmetric, their means and medians coincide.5 In the
basic model, we assume that the population is immobile across the regions.6

We assume that, in order to finance the project cost 𝑐(𝑥), region A’s government taxes all res-
idents equally. Each of region A’s residents pays 𝑐(𝑥)/𝑛𝐴 to the regional government, where the
population in region A is denoted by 𝑛𝐴.

The transfers from region B to region A are assumed to be shared equally by region B’s residents
through a tax by region B’s government. Here, let 𝑇 be the per-capita transfer of region B; that is,
every resident in region B pays 𝑇 to region B’s government. The total amount of transfers is 𝑛𝐵𝑇,
which is assumed to be distributed equally to all residents in region A; that is, every resident in
region A receives 𝑛𝐵𝑇/𝑛𝐴 from the distribution.

There is an upper-tier government, called the central government, that provides a cost-matching
grant to region A. Under this grant, if region A’s government produces 𝑥 units of the project, then
the central government provides a subsidy of (1−𝛾)𝑐(𝑥) to region A’s government, where 𝛾 ∈ [0, 1]
is the cost-matching rate. We assume that (i) region A’s government distributes (1 − 𝛾)𝑐(𝑥) to all
residents in region A equally, and (ii) the subsidy (1 − 𝛾)𝑐(𝑥) is financed by an equal tax on all
residents in region B by the central government. Hence, region A’s net share of the project cost is
𝛾𝑐(𝑥)/𝑛𝐴, and region B’s net share is (1 − 𝛾)𝑐(𝑥)/𝑛𝐵 . The central government decides the value of
𝛾 in advance of a regional election and an interregional negotiation. Clearly, 𝛾 = 1 corresponds to
a situation of “no cost-matching grant.”

Given the regional and central government schemes, we assume that region A’s resident, whose
taste is 𝑎 ∈ 𝒜, has the utility function

𝑈(𝑥, 𝑇; 𝑎) = 𝑢(𝑥, 𝑎) + 𝐼𝐴
𝑛𝐴

− 𝛾
𝑛𝐴

𝑐(𝑥) + 𝑛𝐵
𝑛𝐴

𝑇.

Here, 𝑢(𝑥, 𝑎) represents the gross benefit from the public project earned by 𝑎, 𝐼𝐴 represents the total
income of region A, 𝐼𝐴/𝑛𝐴 is the per-capita income of this region, and −(𝛾/𝑛𝐴)𝑐(𝑥) + (𝑛𝐵/𝑛𝐴)𝑇
represents the net payment from each resident in region A. Similarly, we assume that region B’s
resident 𝑏 ∈ ℬ has the utility function

𝑉(𝑥, 𝑇; 𝑏) = 𝑣(𝑥, 𝑏) + 𝐼𝐵
𝑛𝐵

− 1 − 𝛾
𝑛𝐵

𝑐(𝑥) − 𝑇,

5In our Theorem 1, the symmetry of the population distributions is essential for a “self-representation equilibrium”
to achieve efficiency. In Section 3.5, we discuss the case in which the population distribution is asymmetric.

6In Section 4.3, we discuss the stability of the population distributions when the population is mobile.
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where 𝑣(𝑥, 𝑏) is the gross benefit from the project earned by 𝑏, 𝐼𝐵 is the total income of region B,
𝐼𝐵/𝑛𝐵 is the per-capita income of this region, and −(1 − 𝛾)𝑐(𝑥)/𝑛𝐵 − 𝑇 is the resident’s payment.
We assume that 𝐼𝐴 and 𝐼𝐵 are large enough to meet the tax payments.7 We further assume that
𝑢(𝑥, 𝑎) = 𝑎𝜇(𝑥), where 𝜇(0) = 0, 𝜇′(𝑥) > 0, and 𝜇″(𝑥) ≤ 0, and 𝑣(𝑥, 𝑏) = 𝑏𝜈(𝑥), where 𝜈(0) = 0,
𝜈′(𝑥) > 0, and 𝜈″(𝑥) ≤ 0. Under this assumption,

𝑢𝑥(𝑥, 𝑎) ≡
𝜕𝑢(𝑥, 𝑎)
𝜕𝑥 > 0, 𝑢𝑥𝑥(𝑥, 𝑎) ≡

𝜕2𝑢(𝑥, 𝑎)
𝜕𝑥2 ≤ 0, 𝑢𝑎(𝑥, 𝑎) ≡

𝜕𝑢(𝑥, 𝑎)
𝜕𝑎 > 0,

and 𝑢𝑥𝑎(𝑥, 𝑎) ≡
𝜕2𝑢(𝑥, 𝑎)
𝜕𝑎𝜕𝑥 = 𝑢𝑎𝑥(𝑥, 𝑎) ≡

𝜕2𝑢(𝑥, 𝑎)
𝜕𝑥𝜕𝑎 > 0.

Similarly,

𝑣𝑥(𝑥, 𝑏) ≡
𝜕𝑣(𝑥, 𝑏)
𝜕𝑥 > 0, 𝑣𝑥𝑥(𝑥, 𝑏) ≡

𝜕2𝑣(𝑥, 𝑏)
𝜕𝑥2 ≤ 0, 𝑣𝑏(𝑥, 𝑏) ≡

𝜕𝑣(𝑥, 𝑏)
𝜕𝑏 > 0,

and 𝑣𝑥𝑏(𝑥, 𝑏) ≡
𝜕2𝑣(𝑥, 𝑏)
𝜕𝑏𝜕𝑥 = 𝑣𝑏𝑥(𝑥, 𝑏) ≡

𝜕2𝑣(𝑥, 𝑏)
𝜕𝑥𝜕𝑏 > 0.

Given the cost-matching grant, regions A and B negotiate the project level and the monetary
transfers between the two regions. Formally, we consider a three-stage game with complete infor-
mation. The sequence of the game is as follows:

Stage 0 The central government sets the cost-matching parameter 𝛾 ∈ [0, 1].

Stage 1 After observing 𝛾, each region selects a regional representative through majority voting.
All residents are eligible to be the region’s representative. Each resident is assumed to vote
for her optimal candidate, anticipating the outcomes of subsequent stages.

Stage 2 The representatives of regions A and B negotiate over the levels of 𝑥 and 𝑇, according to
their interests. If they reach an agreement on these levels, then it is executed. If the nego-
tiation breaks down, then region A’s representative independently decides the project level
𝑥, and there are no interregional transfers (namely, 𝑇 = 0). We analyze the negotiation in
Stage 2 with the asymmetricNash bargaining solution. This independent decision constitutes
a breakdown outcome.

For a model with a unidirectional externality, the game, consisting of an election and a ne-
gotiation stage, has been examined by Gradstein (2004), Rota-Graziosi (2009), Loeper (2015), and
Shinohara (2018). We include an additional stage that involves the central government (Stage 0),
prior to the election and negotiation stages. In our model, given the cost-matching rate determined
by the central government, the two regions negotiate through their representatives. Models of nego-
tiations, given a government tax and a subsidy policy, have been investigated in Coasean situations
(see Lülfesmann, 2002; Rosenkranz and Schmitz, 2007; Lüelfesmann et al., 2015; MacKenzie and
Ohdorf, 2016). The election and negotiation, given the central government policy, can be observed
when the cost-matching rate for some interregional public projects is set by law, and is independent
of the negotiation results.8

With regard to the assumptions on the functional forms, our utility and cost functions are more
general than those in previous studies. Gradstein (2004), Rota-Graziosi (2009), and Shinohara
(2018) assume 𝜇(𝑥) = 𝜈(𝑥) = 𝑥 and 𝑐(𝑥) = 𝑥2/2. Loeper (2015, 2017) uses a different benefit
function. Despite the generality, we show in Proposition 1 that a strategic delegation occurs.

7This assumption seems standard in studies on strategic delegation because a similar assumption is made in related
studies, such as Besley and Coate (2003), Dur and Roelfsema (2005), and Cheikbossian (2016). Nevertheless, in Section
4.1, we discuss the case in which the budget feasible conditions matter.

8For example, in Japan, the cost-matching rate for some river maintenance projects is specified in the River Act. See
Kobayashi and Ishida (2012).
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3 Analysis
3.1 Efficient projects
We first identify the efficient level of a project. Because we assume a symmetric population distri-
bution on 𝒜 and ℬ, the total surplus of the overall economy is given by

𝑛𝐴∫
𝑎∈𝒜

𝑢(𝑥, 𝑎)𝑓𝐴(𝑎)d𝑎+𝑛𝐵∫
𝑏∈ℬ

𝑣(𝑥, 𝑏)𝑓𝐵(𝑏)d𝑏+𝐼𝐴+𝐼𝐵−𝑐(𝑥) = 𝑛𝐴𝑎𝑀𝜇(𝑥)+𝑛𝐵𝑏𝑀𝜈(𝑥)+𝐼𝐴+𝐼𝐵−𝑐(𝑥).

Hence, the level of the project that maximizes the total surplus, denoted by 𝑥𝐸 , satisfies

𝑛𝐴𝑎𝑀𝜇′(𝑥𝐸) + 𝑛𝐵𝑏𝑀𝜈′(𝑥𝐸) = 𝑐′(𝑥𝐸). (1)

3.2 The cost-matching grant and the efficiency
3.2.1 Analysis of Stage 2

We solve the games by backward induction.
Given that 𝑎𝑅 ∈ 𝒜 and 𝑏𝑅 ∈ ℬ are representatives appointed in Stage 1, we first analyze the

negotiation in Stage 2. If this negotiation breaks down, then regionA’s representative 𝑎𝑅 decides the
level of 𝑥 independently, such that she maximizes her utility𝑈(𝑥, 0; 𝑎𝑅) = 𝑢(𝑥, 𝑎𝑅) − (𝛾/𝑛𝐴)𝑐(𝑥) +
𝐼𝐴/𝑛𝐴. If we denote themaximizer of𝑈(𝑥, 0; 𝑎𝑅) by 𝑥𝐴, then 𝑢𝑥(𝑥𝐴, 𝑎𝑅) = (𝛾/𝑛𝐴)𝑐′(𝑥𝐴) by the first-
order condition. By this condition, 𝑥𝐴 depends on 𝑎𝑅 and 𝛾. Hence, we can express 𝑥𝐴 = 𝑥𝐴(𝑎𝑅, 𝛾),
such that

𝑢𝑥(𝑥𝐴(𝑎𝑅, 𝛾), 𝑎𝑅) =
𝛾
𝑛𝐴

𝑐′(𝑥𝐴(𝑎𝑅, 𝛾)). (2)

Obviously, 𝑥𝐴(𝑎𝑅, 𝛾) is well defined by the assumptions 𝑢(𝑥, 𝑎𝑅) and 𝑐(𝑥).
The project level when the negotiation breaks down ismanipulated through the choice of region

A’s representative. Here, 𝜕𝑥𝐴(𝑎𝑅, 𝛾)/𝜕𝑎𝑅 measures the degree of this manipulability, which plays a
key role in our main result. By (2), this is calculated as

𝜕𝑥𝐴(𝑎𝑅, 𝛾)
𝜕𝑎𝑅

= − 𝑢𝑥𝑎(𝑥𝐴, 𝑎𝑅)
𝑢𝑥𝑥(𝑥𝐴, 𝑎𝑅) −

𝛾
𝑛𝐴
𝑐″(𝑥𝐴)

> 0. (3)

Anticipating the breakdown outcome, representatives 𝑎𝑅 and 𝑏𝑅 decide 𝑥 and 𝑇 through Nash
bargaining: 𝑥 and 𝑇 maximize the Nash product function

𝛽 ln [𝑢(𝑥, 𝑎𝑅) +
𝑛𝐵
𝑛𝐴

𝑇 + 𝐼𝐴
𝑛𝐴

− 𝛾
𝑛𝐴

𝑐(𝑥) − 𝑈(𝑥𝐴, 0; 𝑎𝑅)]

+(1 − 𝛽) ln [𝑣(𝑥, 𝑏𝑅) +
𝐼𝐵
𝑛𝐵

− 1 − 𝛾
𝑛𝐵

𝑐(𝑥) − 𝑇 − 𝑉(𝑥𝐴, 0; 𝑏𝑅)] ,

where 𝑥𝐴 = 𝑥𝐴(𝑎𝑅, 𝛾), and 𝛽 ∈ [0, 1] is the bargaining power of 𝑎𝑅.9 The properties of the bargain-
ing outcome are presented as follows:

Lemma 1 Let 𝑥𝑛𝑏 and 𝑇𝑛𝑏 be the maximizers of the Nash product.10 Then,

𝑛𝐴𝑢𝑥(𝑥𝑛𝑏, 𝑎𝑅) + 𝑛𝐵𝑣𝑥(𝑥𝑛𝑏, 𝑏𝑅) = 𝑐′(𝑥𝑛𝑏), or 𝑛𝐴𝑎𝑅𝜇′(𝑥𝑛𝑏) + 𝑛𝐵𝑏𝑅𝜈′(𝑥𝑛𝑏) = 𝑐′(𝑥𝑛𝑏), (4)
9The regional bargaining power is assumed to be independent of who is chosen as the representative.
10The superscript “nb” denotes “Nash bargaining.”
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and

𝑛𝐵
𝑛𝐴

𝑇𝑛𝑏 = 𝛽
𝑛𝐴

[𝑛𝐴𝑢(𝑥𝑛𝑏, 𝑎𝑅) + 𝑛𝐵𝑣(𝑥𝑛𝑏, 𝑏𝑅) − 𝑐(𝑥𝑛𝑏) − (𝑛𝐴𝑢(𝑥𝐴, 𝑎𝑅) + 𝑛𝐵𝑣(𝑥𝐴, 𝑏𝑅) − 𝑐(𝑥𝐴))]

− [𝑢(𝑥𝑛𝑏, 𝑎𝑅) −
𝛾
𝑛𝐴

𝑐(𝑥𝑛𝑏) − (𝑢(𝑥𝐴, 𝑎𝑅) −
𝛾
𝑛𝐴

𝑐(𝑥𝐴))] . (5)

We denote 𝑥𝑛𝑏 ≡ 𝑥𝑛𝑏(𝑎𝑅, 𝑏𝑅) and 𝑇𝑛𝑏 ≡ 𝑇𝑛𝑏(𝑎𝑅, 𝑏𝑅), because 𝑥𝑛𝑏 and 𝑇𝑛𝑏 depend on the repre-
sentatives’ preferences (𝑎𝑅, 𝑏𝑅), by (4) and (5).

From (4), we learn that the Nash bargaining determines the project level 𝑥𝑛𝑏 that maximizes
𝑛𝐴𝑢(𝑥, 𝑎𝑅) + 𝑛𝐵𝑣(𝑥, 𝑏𝑅) − 𝑐(𝑥). This can be interpreted as a virtual total surplus of the entire econ-
omy, as if every resident of region A (region B) has the same benefit function as its representative
𝑎𝑅 (𝑏𝑅, respectively). From (5), region A never makes transfers to region B because 𝑇𝑛𝑏 is nonneg-
ative. 𝑇𝑛𝑏 is nonnegative because the term in brackets in the first line of (5) is the change of the
virtual total surplus from the negotiation. This term is nonnegative because, from (4), 𝑥𝑛𝑏 maxi-
mizes 𝑛𝐴𝑢(𝑥, 𝑎𝑅) + 𝑛𝐵𝑣(𝑥, 𝑏𝑅) − 𝑐(𝑥). The term in brackets in the second line is 𝑎𝑅’s individual
surplus from the negotiation, which is nonpositive, by (2).

As the result of the Nash bargaining, each resident 𝑎 ∈ 𝒜 receives the payoff

𝑈(𝑥𝑛𝑏, 𝑇𝑛𝑏; 𝑎) = 𝑢(𝑥𝑛𝑏, 𝑎) + 𝐼𝐴
𝑛𝐴

− 𝛾
𝑛𝐴

𝑐(𝑥𝑛𝑏) + 𝑛𝐵
𝑛𝐴

𝑇𝑛𝑏

= 𝑢(𝑥𝑛𝑏, 𝑎) − 𝑢(𝑥𝑛𝑏, 𝑎𝑅) + 𝑢(𝑥𝐴, 𝑎𝑅) −
𝛾
𝑛𝐴

𝑐(𝑥𝐴) + 𝐼𝐴
𝑛𝐴

(6)

+ 𝛽
𝑛𝐴

[𝑛𝐴𝑢(𝑥𝑛𝑏, 𝑎𝑅) + 𝑛𝐵𝑣(𝑥𝑛𝑏, 𝑏𝑅) − 𝑐(𝑥𝑛𝑏) − (𝑛𝐴𝑢(𝑥𝐴, 𝑎𝑅) + 𝑛𝐵𝑣(𝑥𝐴, 𝑏𝑅) − 𝑐(𝑥𝐴))] ,

and each resident 𝑏 ∈ ℬ receives the payoff11

𝑉(𝑥𝑛𝑏, 𝑇𝑛𝑏; 𝑏) = 𝑣(𝑥𝑛𝑏, 𝑏) + 𝐼𝐵
𝑛𝐵

− 1 − 𝛾
𝑛𝐵

𝑐(𝑥𝑛𝑏) − 𝑇𝑛𝑏

= 𝑣(𝑥𝑛𝑏, 𝑏) − 𝑣(𝑥𝑛𝑏, 𝑏𝑅) + 𝑣(𝑥𝐴, 𝑏𝑅) −
1 − 𝛾
𝑛𝐵

𝑐(𝑥𝐴) + 𝐼𝐵
𝑛𝐵

(7)

+ 1 − 𝛽
𝑛𝐵

[𝑛𝐴𝑢(𝑥𝑛𝑏, 𝑎𝑅) + 𝑛𝐵𝑣(𝑥𝑛𝑏, 𝑏𝑅) − 𝑐(𝑥𝑛𝑏) − (𝑛𝐴𝑢(𝑥𝐴, 𝑎𝑅) + 𝑛𝐵𝑣(𝑥𝐴, 𝑏𝑅) − 𝑐(𝑥𝐴))] .

In these payoff functions, the terms between the square brackets represent the virtual total sur-
plus relative to the breakdown of the negotiation. According to the Nash bargaining solution, repre-
sentative 𝑎𝑅 receives the payoff at the breakdown of the negotiation (i.e., 𝑢(𝑥𝐴, 𝑎𝑅) − (𝛾/𝑛𝐴)𝑐(𝑥𝐴))
plus the surplus distribution in proportion to her bargaining power and region A’s population. In
addition, the difference between the project benefits of region A’s residents and those of the repre-
sentative (i.e., 𝑢(𝑥𝑛𝑏, 𝑎) − 𝑢(𝑥𝑛𝑏, 𝑎𝑅)) is included in the payoff function for all other residents 𝑎 in
region A. The same interpretation applies to the payoff functions of region B’s residents.

3.2.2 Analysis of Stage 1

Wenowanalyze Stage 1. First, note that the above payoff functions𝑈(𝑥𝑛𝑏, 𝑇𝑛𝑏; 𝑎) and𝑉(𝑥𝑛𝑏, 𝑇𝑛𝑏; 𝑏)
satisfy the single-crossing condition of Gans and Smart (1996), which is shown in the appendix.

11Note that from (5), we have

𝑇𝑛𝑏 = 𝑣(𝑥𝑛𝑏, 𝑏𝑅) −
1 − 𝛾
𝑛𝐵

𝑐(𝑥𝑛𝑏) − 𝑣(𝑥𝐴, 𝑏𝑅) +
1 − 𝛾
𝑛𝐵

𝑐(𝑥𝐴)

− 1 − 𝛽
𝑛𝐵

[𝑛𝐴𝑢(𝑥𝑛𝑏, 𝑎𝑅) + 𝑛𝐵𝑣(𝑥𝑛𝑏, 𝑏𝑅) − 𝑐(𝑥𝑛𝑏) − (𝑛𝐴𝑢(𝑥𝐴, 𝑎𝑅) + 𝑛𝐵𝑣(𝑥𝐴, 𝑏𝑅) − 𝑐(𝑥𝐴))] .
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Hence, we regard the median resident in a region as being pivotal in the election in Stage 1. An-
ticipating the outcome in Stage 2, the median residents 𝑎𝑀 and 𝑏𝑀 choose their representatives
(𝑎𝑅 and 𝑏𝑅, respectively) by maximizing 𝑈(𝑥𝑛𝑏, 𝑇𝑛𝑏; 𝑎𝑀) and 𝑉(𝑥𝑛𝑏, 𝑇𝑛𝑏; 𝑏𝑀), respectively. We
examine the pure-strategy Nash equilibria of the game in Stage 1 by the median residents. By the
definition of pure-strategy Nash equilibria, (𝑎∗𝑅, 𝑏∗𝑅) ∈ 𝒜 × ℬ is a Nash equilibrium of this Stage
1 game if 𝑎∗𝑅 and 𝑏∗𝑅 are mutually best responses. That is, (𝑎∗𝑅, 𝑏∗𝑅) is a solution of the first-order
conditions,

𝜕𝑈(𝑥𝑛𝑏(𝑎∗𝑅, 𝑏∗𝑅), 𝑇𝑛𝑏(𝑎∗𝑅, 𝑏∗𝑅); 𝑎𝑀)
𝜕𝑎𝑅

= 0 and 𝜕𝑉(𝑥𝑛𝑏(𝑎∗𝑅, 𝑏∗𝑅), 𝑇𝑛𝑏(𝑎∗𝑅, 𝑏∗𝑅); 𝑏𝑀)
𝜕𝑏𝑅

= 0, (8)

and the second-order conditions are satisfied.
In order to understand the median residents’ incentives to choose their representatives, it is

helpful to see the first derivatives of their payoff functions.

Lemma 2 It follows that

𝜕 𝑈(𝑥𝑛𝑏, 𝑇𝑛𝑏; 𝑎𝑀)
𝜕 𝑎𝑅

=𝜕𝑥
𝑛𝑏

𝜕𝑎𝑅
[𝑢𝑥(𝑥𝑛𝑏, 𝑎𝑀) − 𝑢𝑥(𝑥𝑛𝑏, 𝑎𝑅)]

− ( 𝛽
𝑛𝐴

) 𝜕𝑥
𝐴

𝜕𝑎𝑅
[𝑛𝐴𝑢𝑥(𝑥𝐴, 𝑎𝑅) + 𝑛𝐵𝑣𝑥(𝑥𝐴, 𝑏𝑅) − 𝑐′(𝑥𝐴))]

−(1 − 𝛽) [𝑢𝑎(𝑥𝑛𝑏, 𝑎𝑅) − 𝑢𝑎(𝑥𝐴, 𝑎𝑅)]

, (9)

and

𝜕 𝑉(𝑥𝑛𝑏, 𝑇𝑛𝑏; 𝑏𝑀)
𝜕 𝑏𝑅

= 𝜕𝑥𝑛𝑏
𝜕𝑏𝑅

[𝑣𝑥(𝑥𝑛𝑏, 𝑏𝑀) − 𝑣𝑥(𝑥𝑛𝑏, 𝑏𝑅)] − 𝛽[𝑣𝑏(𝑥𝑛𝑏, 𝑏𝑅) − 𝑣𝑏(𝑥𝐴, 𝑏𝑅)]. (10)

RegionA’smedian resident can influence 𝑥𝑛𝑏, 𝑇𝑛𝑏, and 𝑥𝐴 through the choice of 𝑎𝑅. The effects
on 𝑈(𝑥𝑛𝑏, 𝑇𝑛𝑏; 𝑎𝑀) caused by the changes of these three elements are summarized in (9). In (9),
the first line summarizes the effect of a change in 𝑥𝑛𝑏, and the second line shows the effect of a
change in 𝑥𝐴. The third line shows the “cross” effect of changes in the representative’s preferences
and in the project level. This comes from the effect on 𝑇𝑛𝑏 of a change in the benefit to region
A’s representative, 𝑢(⋅, 𝑎𝑅). Region A’s median resident balances the three effects to choose the
representative for region A.

In contrast, Region B’s median resident can influence 𝑥𝑛𝑏 and 𝑇𝑛𝑏, but not 𝑥𝐴, through the
choice of 𝑏𝑅. Thus, we do not observe an effect from a change in 𝑥𝐴 in (10), in contrast to (9). From
(10), we observe that region B’s median resident balances two effects.

Comparing (1) and (4), we find that the project is undertaken at the efficient level if the median
resident votes for herself in every region: that is, (𝑎∗𝑅, 𝑏∗𝑅) = (𝑎𝑀 , 𝑏𝑀). We call the equilibrium
with (𝑎∗𝑅, 𝑏∗𝑅) = (𝑎𝑀 , 𝑏𝑀) a self-representation equilibrium. Hereafter, focusing on the existence of
the self-representation equilibrium, we examine whether the project is carried out efficiently with
a cost-matching grant.12

First, as a reference point for the analysis, we show that, without the cost-matching grant, the
median residents appoint residents whose preferences for the project are weaker than their own;
see Proposition 1. Thus, the self-representation is impossible.

Proposition 1 Suppose 𝛾 = 1. Then, the equilibrium representatives (𝑎∗𝑅, 𝑏∗𝑅)must satisfy 𝑎∗𝑅 < 𝑎𝑀
and 𝑏∗𝑅 ≤ 𝑏𝑀 with equality if 𝛽 = 0. Hence, the equilibrium project level is below the efficient level.

12Under our general utility and cost functions, there might be a case where the efficient project is achieved even if
(𝑎∗𝑅, 𝑏∗𝑅) ≠ (𝑎𝑀, 𝑏𝑀). However, we consider it reasonable to focus on the self-representation, because this leads to an
efficient project for all functions. Furthermore, in some cases (see Example 1), the self-representation is the only way to
achieve the efficient project (see Footnote 16).
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This was established by Gradstein (2004) under a special case of 𝑢(𝑥, 𝑎) = 𝑎𝑥, 𝑣(𝑥, 𝑏) = 𝑏𝑥,
𝑐(𝑥) = 𝑥2/2, and 𝛽 = 1 (see Section 3.1 in Gradstein (2004)).

Now, we examine whether there is a cost-matching rate 𝛾 under which this self-representation
behavior is supported in a Nash equilibrium of an induced Stage 1 game. Theorem 1 establishes a
necessary and sufficient condition for the rate 𝛾 and the degree of manipulability of 𝑥𝐴 under which
the efficient project is achieved in equilibrium.

Theorem 1 Let 𝛾∗ be a cost-matching rate such that

𝛾∗ ≡ 𝑛𝐴𝑢𝑥(𝑥𝑛𝑏(𝑎𝑀 , 𝑏𝑀), 𝑎𝑀)
𝑛𝐴𝑢𝑥(𝑥𝑛𝑏(𝑎𝑀 , 𝑏𝑀), 𝑎𝑀) + 𝑛𝐵𝑣𝑥(𝑥𝑛𝑏(𝑎𝑀 , 𝑏𝑀), 𝑏𝑀)

,

which is a “Lindahl price” based on the preferences of region A’s median resident at 𝑥𝑛𝑏. Then,
(i) (𝑎𝑅, 𝑏𝑅) = (𝑎𝑀 , 𝑏𝑀) is a solution of the first-order conditions (8) if and only if 𝛾 = 𝛾∗.

(ii) The second-order condition for maximization is satisfied at (𝑎𝑅, 𝑏𝑅) = (𝑎𝑀 , 𝑏𝑀) if and only if
𝜕𝑥𝐴(𝑎𝑅,𝛾)

𝜕𝑎𝑅
||𝑎𝑅=𝑎𝑀,𝛾=𝛾∗

is sufficiently small.

Therefore, there exists a subgame-perfect equilibrium in which the median resident votes for herself in
every region and the efficient public project is achieved if and only if 𝛾 = 𝛾∗ and 𝜕𝑥𝐴(𝑎𝑅,𝛾)

𝜕𝑎𝑅
||𝑎𝑅=𝑎𝑀,𝛾=𝛾∗

is sufficiently small.

As Lemma 3 clarifies, the cost-matching grant plays a role in coordinating a relative relation
of the project level when the negotiation succeeds or fails, given that the median residents self-
represent.

Lemma 3 𝑥𝐴(𝑎𝑀 , 𝛾) ⋛ 𝑥𝑛𝑏(𝑎𝑀 , 𝑏𝑀) if 𝛾 ⋚ 𝛾∗.
Theorem 1 shows that coordinating the relative relation between the two levels of the project is

crucial for the self-representation to be supported in equilibrium. The Lindahl price 𝛾∗ plays a role
in eliminating the strategic effect due to the changes to 𝑥𝑛𝑏, 𝑥𝐴, and the benefits 𝑢(⋅, 𝑎𝑅) and 𝑣(⋅, 𝑏𝑅)
in (9) and (10). This is because, under the optimal grant 𝛾∗, the negotiated level of the project and
the level at a disagreement are equated: 𝑥𝑛𝑏(𝑎𝑀 , 𝑏𝑀) = 𝑥𝐴(𝑎𝑀 , 𝛾∗). Thus, the negotiated level of
the project can be achieved even if the negotiation breaks down and the surplus of the negotiation is
zero. The strategic delegation occurs because the median residents try to strategically increase their
distribution of the negotiation surplus. However, because the negotiation generates no surplus, the
median residents no longer strategically choose their representatives under the optimal grant.

The condition of 𝜕𝑥𝐴(𝑎𝑅, 𝛾)/𝜕𝑎𝑅 in Theorem 1 guarantees meeting the second-order condition
for region A’s median resident. We can show that the second-order condition for region B’s median
resident always holds (see Claim 2 in the appendix). However, as Example 1 shows, the second-
order condition for region A’s median resident does not always hold.

Example 1 Suppose 𝑐(𝑥) = 𝑥2/2, 𝑢(𝑥, 𝑎) = 𝑎𝑥, and 𝑣(𝑥, 𝑏) = 𝑏𝑥. Then, from (2),

𝑥𝐴(𝑎𝑅, 𝛾) =
𝑛𝐴𝑎𝑅
𝛾 , 𝑈(𝑥𝐴, 0; 𝑎𝑅) =

𝑛𝐴𝑎2𝑅
2𝛾 , and 𝑉(𝑥𝐴, 0; 𝑏𝑅) =

2𝛾𝑏𝑅𝑎𝑅𝑛𝐴𝑛𝐵 − (1 − 𝛾)𝑎2𝑅𝑛2𝐴
2𝛾2𝑛𝐵

.

From Lemma 1, Nash bargaining achieves

𝑥𝑛𝑏(𝑎𝑅, 𝑏𝑅) = 𝑛𝐴𝑎𝑅 + 𝑛𝐵𝑏𝑅 and 𝑇𝑛𝑏 = (𝛽 + 𝛾)(𝑛𝐴𝑎𝑅(𝛾 − 1) + 𝑛𝐵𝑏𝑅𝛾)2
2𝛾2𝑛𝐵

.

From (6), given the Nash bargaining outcome, each resident 𝑎 ∈ 𝒜 obtains

𝑈(𝑥𝑛𝑏, 𝑇𝑛𝑏; 𝑎) = 𝑎 (𝑛𝐴𝑎𝑅 + 𝑛𝐵𝑏𝑅) −
𝛾
2𝑛𝐴

(𝑎𝑅 + 𝑏𝑅)
2 + (𝛽 + 𝛾) (𝑛𝐴𝑎𝑅(𝛾 − 1) + 𝑛𝐵𝑏𝑅𝛾)

2

2𝛾2𝑛𝐴
+ 𝐼𝐴
𝑛𝐴
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and

𝜕2𝑈(𝑥𝑛𝑏, 𝑇𝑛𝑏; 𝑎)
𝜕 𝑎2𝑅

< 0 ⟺ 𝑛𝐴 ((𝛽 − 2)𝛾2 + (1 − 2𝛽)𝛾 + 𝛽) < 0

⟺ 1 ≥ 𝛾 > Γ(𝛽) ≡ 1 − 2𝛽 + √1 + 4𝛽
2(2 − 𝛽) . (11)

Hence,𝑈(𝑥𝑛𝑏, 𝑇𝑛𝑏; 𝑎𝑀) is concave in 𝑎𝑅 if 𝛾 is greater than the cutoff value Γ(𝛽). Because Γ(𝛽)
is increasing in 𝛽, (Γ(𝛽), 1] shrinks as 𝛽 increases. Thus, when the surplus distribution to region
A is large (i.e., 𝛽 is large), a high cost-share for region A (i.e., a high 𝛾) is necessary to mitigate
the strategic behavior of the choice of region A’s representatives and then for region A’s second-
order condition to be met. In addition, because Γ(0) = 1/2, the second-order condition for region
A’s median resident holds only if 𝛾 > 1/2. Whether condition (11) depends only on 𝛽 relies on
the functional forms. Indeed, we observe that under the same linear benefit function, but with
𝑐(𝑥) = 𝑥3/3, the second-order condition for region A’s median resident depends on the relative
position between𝒜 and ℬ.13

In contrast, from (7), each 𝑏 ∈ ℬ obtains

𝑉(𝑥𝑛𝑏, 𝑇𝑛𝑏; 𝑏) = 𝑏(𝑛𝐴𝑎𝑅 + 𝑛𝐵𝑏𝑅) −
1 − 𝛾
2𝑛𝐵

(𝑛𝐴𝑎𝑅 + 𝑛𝐵𝑏𝑅)2 −
(𝛽 + 𝛾) (𝑛𝐴𝑎𝑅(𝛾 − 1) + 𝑛𝐵𝑏𝑅𝛾)

2

2𝛾2𝑛𝐵
+ 𝐼𝐵
𝑛𝐵

.

Here, 𝑉(𝑥𝑛𝑏, 𝑇𝑛𝑏; 𝑏𝑀) is always concave in 𝑏𝑅 because

𝜕2 𝑉(𝑥𝑛𝑏, 𝑇𝑛𝑏; 𝑏𝑀)
𝜕 𝑏2𝑅

= −1 − 𝛽 < 0.

In summary, the second-order condition for region A’s median resident holds at 𝛾 = 𝛾∗ if and
only if the Lindahl price 𝛾∗ is sufficiently large; that is, 𝛾∗ = 𝑛𝐴𝑎𝑀/(𝑛𝐴𝑎𝑀 + 𝑛𝐵𝑏𝑀) ∈ (Γ(𝛽), 1].
Furthermore, 𝛾∗ ≥ Γ(𝛽) if and only if

𝑛𝐴𝑎𝑀
𝑛𝐵𝑏𝑀

≥ 1 − 2𝛽 + √1 + 4𝛽
3 − √1 + 4𝛽

,

and the range of the right-hand side of the above inequality takes at least one, because14

1 ≤ 1 − 2𝛽 + √1 + 4𝛽
3 − √1 + 4𝛽

≤ √5 − 1
3 − √5

.

Thus, the second-order condition for region A’s median resident holds when 𝛾 = 𝛾∗ if 𝑛𝐴𝑎𝑀 is
sufficiently larger than 𝑛𝐵𝑏𝑀 .

Weproceedwith the analysis under the assumption of 𝛾 ∈ (Γ(𝛽), 1].15 Wederive the equilibrium
representatives (𝑎∗𝑅, 𝑏∗𝑅) for the median residents by solving (8), such that

𝑎∗𝑅 = − 𝛾2
(𝛽 − 2)𝛾2 + (1 − 2𝛽)𝛾 + 𝛽𝑎𝑀 − 𝑛𝐵𝛾(𝛽𝛾 − 𝛽 − 𝛾)

((𝛽 − 2)𝛾2 + (1 − 2𝛽)𝛾 + 𝛽)𝑛𝐴
𝑏∗𝑅,

and 𝑏∗𝑅 =
1

1 + 𝛽𝑏𝑀 + 𝛽(1 − 𝛾)𝑛𝐴
(1 + 𝛽)𝛾𝑛𝐵

𝑎∗𝑅.
(12)

In (12), the first line is the best response of region A’s median resident, and the second is that of re-
gion B’smedian resident. Note that the best response of regionA’smedian resident shows a strategic

13See Section A of the online appendix.
14Note that (1 − 2𝛽 +√1 + 4𝛽)/(3 − √1 + 4𝛽) is increasing in 𝛽 and takes 1 at 𝛽 = 0.
15In Section 3.4.2, we discuss the case in which (11) does not hold.
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substitute, because the coefficient of 𝑏∗𝑅 is negative, by (11); in contrast, that of region B’s median
resident exhibits a strategic complement, because the coefficient of 𝑎∗𝑅 is positive. Solving (12) yields

𝑎∗𝑅 =
𝛾((𝑛𝐴𝑎𝑀 − 𝑛𝐵𝑏𝑀)𝛾 + 𝛽((𝑛𝐴𝑎𝑀 + 𝑛𝐵𝑏𝑀)𝛾 − 𝑛𝐵𝑏𝑀))

(𝛽 + 𝛾)(2𝛾 − 1) ,

𝑏∗𝑅 =
𝑛𝐵𝑏𝑀𝛾(2𝛾 − 1) + 𝛽(1 − 𝛾)((𝑛𝐴𝑎𝑀 + 𝑛𝐵𝑏𝑀)𝛾 − 𝑏𝑀)

(𝛽 + 𝛾)(2𝛾 − 1) ,

and 𝑥𝑛𝑏(𝑎∗𝑅, 𝑏∗𝑅) = 𝑛𝐴𝑎∗𝑅 + 𝑛𝐵𝑏∗𝑅 =
(𝑛𝐴𝑎𝑀 + 𝑛𝐵𝑏𝑀)𝛾 − 𝑛𝐵𝑏𝑀

2𝛾 − 1 .

(13)

Therefore, if 𝛾∗ > Γ(𝛽) and 𝛾 = 𝛾∗, then (𝑎∗𝑅, 𝑏∗𝑅) = (𝑎𝑀 , 𝑏𝑀) and 𝑥𝑛𝑏 = 𝑛𝐴𝑎𝑀 + 𝑛𝐵𝑏𝑀 .16

In Example 1, (11) shows that the second-order condition for region A’s median resident is sat-
isfied if 𝛾 is sufficiently large. This is consistent with the condition of 𝜕𝑥𝐴(𝑎𝑅, 𝛾)/𝜕𝑎𝑅 in Theorem
1, because 𝜕𝑥𝐴(𝑎𝑅, 𝛾)/𝜕𝑎𝑅 is decreasing with respect to 𝛾 in this example. Hence, if 𝛾 is sufficiently
large, then 𝜕𝑥𝐴(𝑎𝑅, 𝛾)/𝜕𝑎𝑅 is sufficiently small.17 Thus, 𝛾 influences the strength of the manipula-
bility of the breakdown outcome 𝑥𝐴 through the choice of 𝑎𝑅.

We discuss how regionA’smedian residentmanipulates𝑥𝐴, with andwithout the cost-matching
grant. First, we consider the case of no cost-matching grant (𝛾 = 1). In this case, an increase in 𝑎𝑅
increases 𝑥𝐴, which, in turn, increases the disagreement payoff of region B’s representative. Under
Nash bargaining, this increase raises the bargaining surplus distributed to region B’s representa-
tive. Thus, the transfers to region A, 𝑇𝑛𝑏, decrease. Therefore, region A’s median resident has an
incentive to decrease 𝑎𝑅 to improve her payoff through an increase in transfers, which leads to the
equilibrium behavior in Proposition 1.

However, in addition to the incentive to decrease 𝑎𝑅, region A’s median resident may have a
strong incentive to increase 𝑎𝑅 if the cost-matching grant is introduced (𝛾 < 1). When 𝛾 < 1, the
increase in 𝑥𝐴, which is induced by the increase in 𝑎𝑅, increases region B’s cost burden (1−𝛾)𝑐(𝑥𝐴),
while his benefit 𝑣(𝑥𝐴, 𝑏𝑅) increases. When 𝛾 is sufficiently small (i.e., region B’s cost burden is
sufficiently large), the increase in the cost burden due to the change in 𝑎𝑅 dominates the increase
in his benefit. Then, the disagreement payoff of region B’s representative decreases, leading to an
increase in transfers to region A, which makes region A’s median resident better off. The payoff
function of region A’s median resident may be convex in 𝑎𝑅 if the effect of increasing region B’s cost
burden is much larger than the increase in the benefit to region B’s representative. Later, in Section
3.4.2, we show the equilibrium in which the median resident of region A selects the resident with
the highest valuation (i.e., ̄𝑎) as region A’s representative if 𝛾 is sufficiently small (see (i) of Result
1). This result supports that region A’s median resident may drastically increase 𝑎𝑅 in the presence
of a cost-matching grant with sufficiently small 𝛾.

Remark 1 In the proof of Theorem 1, we check that the second-order condition is satisfied locally
at the self-representation (𝑎𝑅, 𝑏𝑅) = (𝑎𝑀 , 𝑏𝑀) and 𝛾 = 𝛾∗. In order for the self-representation
equilibrium to be a global solution, we need to examine whether the payoff functions of the median
residents are concave in their representative characteristics. Proposition 2 shows that under some
reasonable benefit and cost functions, which generalize those in Example 1, the payoff functions
are concave in the representative parameters.

Proposition 2 Suppose𝑢(𝑥, 𝑎) = 𝑎𝑥, 𝑣(𝑥, 𝑏) = 𝑏𝑥, and 𝑐(𝑥) = 𝑥𝛼/𝛼, such that𝛼 ≥ 2. If 𝜕𝑥𝐴(𝑎𝑅, 𝛾)/𝜕𝑎𝑅
is sufficiently small, then 𝑈(𝑥𝑛𝑏, 𝑇𝑛𝑏; 𝑎𝑀) is concave in 𝑎𝑅. In addition, 𝑉(𝑥𝑛𝑏, 𝑇𝑛𝑏; 𝑏𝑀) is always
concave in 𝑏𝑅.

The case of 𝛼 ≥ 2 includes many cost functions. Hence, we conclude that, in many cases,
𝑈(𝑥𝑛𝑏, 𝑇𝑛𝑏; 𝑎𝑀) and 𝑉(𝑥𝑛𝑏, 𝑇𝑛𝑏; 𝑏𝑀) are concave in 𝑎𝑅 and 𝑏𝑅, respectively.

16From (13), 𝑥𝑛𝑏(𝑎∗𝑅, 𝑏∗𝑅) = 𝑥𝐸 only if 𝛾 = 𝛾∗, implying that (𝑎∗𝑅, 𝑏∗𝑅) = (𝑎𝑀, 𝑏𝑀). Hence, (𝑎∗𝑅, 𝑏∗𝑅) = (𝑎𝑀, 𝑏𝑀) is
a necessary condition for 𝑥𝑛𝑏(𝑎∗𝑅, 𝑏∗𝑅) = 𝑥𝐸 in this example.

17This is also true in more general cases in which 𝑢(𝑥, 𝑎) = 𝑎𝑥, 𝑣(𝑥, 𝑏) = 𝑏𝑥, and 𝑐(𝑥) = 𝑥𝛼/𝛼 (𝛼 ≥ 2).
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3.3 The re-election possibility
In the basicmodel, the same representative of regionAnegotiateswith region B’s representative and
decides 𝑥𝐴 if the negotiation breaks down. If the cost of a re-election is relatively low, region Amay
conduct a new election to choose another representative after the breakdown of the negotiation.
We consider this case in this subsection. Region A can choose the same representative before and
after the negotiation if the same resident is chosen in both elections. Hence, this model investigates
whether region A commits to using the same representative. The new model is defined formally as
follows.

Stages 0 and 1 are the same as those in the basic model. In Stage 2, the representatives 𝑎𝑅 ∈ 𝒜
and 𝑏𝑅 ∈ ℬ elected in Stage 1 negotiate (𝑥, 𝑇). If they reach an agreement on (𝑥, 𝑇), it is imple-
mented, and the game ends. However, if this negotiation breaks down, the game moves to Stage 3.
In Stage 3, a new representative ̃𝑎𝑅 ∈ 𝒜 is chosen through a new election with majority voting in
Region A. This representative then chooses the project level after the negotiation breaks down.

With the possibility of a re-election, the selection of the negotiation representative can be sepa-
rated from the selection of the decisionmaker of the breakdown outcome. In this case, the choice in
Stage 1 has no effect on the project level when the negotiation breaks down; that is, 𝜕𝑥𝐴/𝜕𝑎𝑅 = 0.
By this property, the second-order condition for region A’s median resident always holds, and 𝛾∗
leads to the efficient project.

Proposition 3 With the re-election after the negotiation breaks down, there is a subgame-perfect equi-
librium in which the project is carried out efficiently if 𝛾 = 𝛾∗.

3.4 Discussion: The cost-matching rate other than 𝛾∗

The Lindahl price depends on the information about themedian residents’ benefit functions. Thus,
it might be difficult for the central government, which falls outside the two regions in our model,
to acquire such information. Hence, it is important to discuss how introducing a cost-matching
grant affects the bargaining outcome if the central government sets a cost-sharing rate other than
the Lindahl price. Our discussion is based on Example 1.

3.4.1 The case of 𝛾 ∈ (Γ(𝛽), 1]

First, we consider the case in which 𝛾 is sufficiently large that it satisfies (11). As calculated pre-
viously, the project level is 𝑥𝑛𝑏(𝑎∗𝑅, 𝑏∗𝑅) in (13) if the two regions negotiate. As a reference point,
we derive the project level when the two regions do not negotiate. In this case, first, the two re-
gions select their representatives through elections, and then region A’s representative decides on
the project level. We find that region A’s median resident chooses herself as the representative, and
sets 𝑥𝐴(𝑎𝑀 , 𝛾) = 𝑛𝐴𝑎𝑀/𝛾 in equilibrium.18 Comparing the cases with and without the negotiation,
we find that

𝑥𝐸 ≥ 𝑥𝐴(𝑎𝑀 , 𝛾) ≥ 𝑥𝑛𝑏(𝑎∗𝑅, 𝑏∗𝑅) if 𝛾 ≥
𝑛𝐴𝑎𝑀

𝑛𝐴𝑎𝑀 + 𝑛𝐵𝑏𝑀
,

and 𝑥𝐸 ≤ 𝑥𝐴(𝑎𝑀 , 𝛾) ≤ 𝑥𝑛𝑏(𝑎∗𝑅, 𝑏∗𝑅) if 𝛾 ≤
𝑛𝐴𝑎𝑀

𝑛𝐴𝑎𝑀 + 𝑛𝐵𝑏𝑀
,

(14)

where 𝑥𝐸 = 𝑛𝐴𝑎𝑀 + 𝑛𝐵𝑏𝑀 .
Without the cost-matching grant (i.e., 𝛾 = 1), the project level through negotiation is the same as

that without a negotiation; that is, 𝑥𝑛𝑏 = 𝑥𝐴 = 𝑛𝐴𝑎𝑀 . On the one hand, the negotiation improves
the total surplus of the overall economy because it internalizes the benefits from the project earned
by the two regions. However, the strategic delegation has a counter effect, and the two effects offset
each other. As a result, the project level is the same, with or without a negotiation.

18This can be verified in a similar way to the second paragraph of the proof of Proposition 3.
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We conclude from (14) that the strategic delegation effect is worsened by the introduction of the
cost-matching grant (i.e., 𝛾 < 1). From (14), the negotiation outcome is always Pareto-inferior to
thatwithout a negotiation, unless the cost-matching rate is the Lindahl price𝑛𝐴𝑎𝑀/(𝑛𝐴𝑎𝑀+𝑛𝐵𝑏𝑀).
This is because the level without bargaining is closer to the efficient level than is the level with bar-
gaining. As discussed after Example 1, the introduction of the cost-matching grant affords regionA’s
median resident a new way to manipulate the disagreement payoff to region B’s representative. As
such, the strategic delegation effect dominates the internalization effect of the negotiation. We have
shown that introducing a nonoptimal cost-matching grant may detract from the welfare-improving
property of the negotiation.

3.4.2 The case of 𝛾 ∉ (Γ(𝛽), 1]

Second, we consider the case in which 𝛾 is sufficiently small that 𝛾 ≤ Γ(𝛽). In this case, region
A’s second-order condition is violated. To simplify the discussion, we examine the case of 𝛽 = 1/2,
𝑛𝐴 = 𝑛𝐵 = 1, and 𝑏𝑀 = 1/2 ≤ 𝑎𝑀 . Then, we have 𝒜 = [𝑎, ̄𝑎] and ℬ = [0, 1], where 𝑎 = 𝑎𝑀 − 1/2
and ̄𝑎 = 𝑎𝑀 + 1/2. By (11), we need to consider 𝛾, such that 0 < 𝛾 ≤ Γ(1/2) = 1/√3 ≈ 0.577.

In this case, the best responses of the median residents and the equilibrium representatives are
summarized as follows:

Result 1 (i) Suppose 𝛾 ∈ [0, 𝑎𝑀/(1 + 𝑎𝑀)]. Then, the best response function of region A’s median
resident 𝑎∗𝑅(𝑏𝑅) is 𝑎∗𝑅(𝑏𝑅) = ̄𝑎, for all 𝑏𝑅 ∈ ℬ, and the best response function of region B’s median
resident 𝑏∗𝑅(𝑎𝑅) (𝑎𝑅 ∈ 𝒜) is the same as that in (12):

𝑏∗𝑅(𝑎𝑅) = min {1, 13 +
𝑎𝑅 (1 − 𝛾)

3𝛾 } .

Thus, the equilibrium representatives are 𝑎∗𝑅 = ̄𝑎 and 𝑏∗𝑅 = 𝑏∗𝑅( ̄𝑎).
(ii) Suppose 𝛾 ∈ (𝑎𝑀/(1 + 𝑎𝑀), 1/√3]. Then, the best response function of region A’s median resident
is

𝑎∗𝑅(𝑏𝑅) = {
̄𝑎 if 0 ≤ 𝑏𝑅 ≤

𝑎𝑀(1−𝛾)
𝛾

𝑎 if 1 ≥ 𝑏𝑅 ≥
𝑎𝑀(1−𝛾)

𝛾

,

and the best response function of region B’s median resident 𝑏∗𝑅(𝑎𝑅) (𝑎𝑅 ∈ 𝒜) is the same as that in (i)
above. There is no equilibrium.19

In Result 1, 𝛾 is “too small” in case (i), and is “intermediate” in case (ii). In case (i), region A’s
median resident selects the resident with the highest benefit as the regional representative. This is
natural, because region A’s cost-share of the project is low when 𝛾 is small, which induces region
A’s median resident to undertake the project at a high level. The project level in equilibrium is

𝑥𝑛𝑏 = ̄𝑎 + 𝑏∗𝑅( ̄𝑎) = 𝑎𝑀 + 1
2 + 𝑏∗𝑅( ̄𝑎),

which is greater than 𝑥𝐸 = 𝑎𝑀 + 1/2, because 𝑏∗𝑅( ̄𝑎) > 0. Thus, the project is undertaken over the
efficient level.

In case (ii), note that 𝑎∗𝑅(𝑏𝑅) is nonincreasing with respect to 𝑏𝑅. As we saw in (12) in Example
1, the best response function of region A’s median resident is decreasing with respect to 𝑏𝑅. A
somewhat weaker property of the strategic substitution is still observed in case (ii). However, in
contrast to (12), region A’s best response function is now discontinuous in the present case. This
discontinuity leads to the nonexistence of the equilibrium.

In conclusion, setting 𝛾 sufficiently small may be used to increase the level of the project, but
the level is not first-best efficient.

19The proof is given in Section B of the online appendix.
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3.5 Discussion: On an asymmetric population distribution
We briefly discuss how our main findings change when the population is distributed asymmetri-
cally. Under such distributions, 𝑎𝑀 ≠ ̃𝑎 ≡ ∫𝑎∈𝒜 𝑎𝑓𝐴(𝑎)d𝑎 and 𝑏𝑀 ≠ ̃𝑏 ≡ ∫𝑏∈ℬ 𝑏𝑓𝐵(𝑏)d𝑏 (𝑎𝑀 and
𝑏𝑀 are medians, and ̃𝑎 and ̃𝑏 are means).

Note that even under asymmetric population distributions, the median voter theorem holds in
the basic models. Hence, the median resident is decisive in the choice of a representative through
an election. Whether the payoff functions of the median residents are concave does not depend
on the population distribution (see Proposition 2 and its proof). That is, whether the second-order
conditions hold for the median residents does not depend on the population distribution. The dis-
cussion after Example 1 on the manipulability of region A’s median resident through the grant also
applies to cases with asymmetric population distributions.

Based on the functional forms in Example 1, we discuss the existence of an optimal rate 𝛾 that
achieves the first-best efficiency. Under asymmetric population distributions, self-representation
clearly no longer achieves efficiency. This is confirmed in Example 1, where 𝑥𝐸 = 𝑛𝐴 ̃𝑎 + 𝑛𝐵 ̃𝑏.
Because 𝑥𝑛𝑏(𝑎∗𝑅, 𝑏∗𝑅) = (𝛾(𝑛𝐴𝑎𝑀 + 𝑛𝐵𝑏𝑀) − 𝑛𝐵𝑏𝑀)/(2𝛾 − 1), we have that

𝑥𝑛𝑏(𝑎∗𝑅, 𝑏∗𝑅) = 𝑛𝐴 ̃𝑎 + 𝑛𝐵 ̃𝑏 ⟺ 𝛾 = 𝛾𝑜𝑝𝑡 ≡ (𝑛𝐴 ̃𝑎 + 𝑛𝐵 ̃𝑏) − 𝑛𝐵𝑏𝑀
2(𝑛𝐴 ̃𝑎 + 𝑛𝐵 ̃𝑏) − (𝑛𝐴𝑎𝑀 + 𝑛𝐵𝑏𝑀)

.

Thus, if 𝛾 = 𝛾𝑜𝑝𝑡 ∈ (Γ(𝛽), 1], then the equilibrium project level is efficient. The central government
may determine the optimal cost-matching rate if the manipulability of the disagreement project is
relatively weak.

In addition, we show that the introduction of 𝛾∗ (Theorem 1) is possibly more efficient than the
case of no cost-matching grant, even under asymmetric population distributions. First, consider
that the population distribution is positively skewed (i.e., 𝑎𝑀 < ̃𝑎 and 𝑏𝑀 < ̃𝑏). As we have already
seen in Proposition 1, if there is no cost-matching grant (𝛾 = 1), then the equilibrium representa-
tives (𝑎∗𝑅, 𝑏∗𝑅) satisfy 𝑎∗𝑅 < 𝑎𝑀 and 𝑏∗𝑅 ≤ 𝑏𝑀 . If a cost-matching grant based on the Lindahl price 𝛾∗
is introduced, self-representation is achieved in equilibrium. Because the population distribution
is positively skewed and 𝑥𝑛𝑏(𝑎𝑅, 𝑏𝑅) is increasing with respect to 𝑎𝑅 and 𝑏𝑅, we have the relation
𝑥𝑛𝑏(𝑎∗𝑅, 𝑏∗𝑅) < 𝑥𝑛𝑏(𝑎𝑀 , 𝑏𝑀) < 𝑥𝑛𝑏( ̃𝑎, ̃𝑏) = 𝑥𝐸 . That is, the equilibrium outcome is more efficient
when the cost-matching grant with 𝛾∗ is introduced than it is when no cost-matching grant is intro-
duced.

In contrast, if the population distribution is negatively skewed (i.e., 𝑎𝑀 > ̃𝑎 and 𝑏𝑀 > ̃𝑏), then
the self-representation does not necessarily lead to a more efficient outcome than that in the case
of no cost-matching grant. The discussion is based on Example 1. The equilibrium project level is
𝑥𝑛𝑏(𝑎∗𝑅, 𝑏∗𝑅) = 𝑛𝐴𝑎𝑀 if no cost-matching grant is introduced, and 𝑥𝑛𝑏(𝑎𝑀 , 𝑏𝑀) = 𝑛𝐴𝑎𝑀 + 𝑛𝐵𝑏𝑀 if
the cost-matching rate with 𝛾∗ is introduced. Under the negatively skewed distribution, the project
level in equilibrium is below the efficient level if there is no cost-matching grant, and is over the
efficient level if 𝛾∗ is introduced: 𝑥𝑛𝑏(𝑎∗𝑅, 𝑏∗𝑅) < 𝑥𝐸 < 𝑥𝑛𝑏(𝑎𝑀 , 𝑏𝑀). Thus, self-representation does
not always yield a more efficient outcome than that in the case of no cost-matching grant. The
condition under which self-representation is more efficient than the case of no cost-matching grant
is |𝑥𝑛𝑏(𝑎∗𝑅, 𝑏∗𝑅) − 𝑥𝐸| > |𝑥𝑛𝑏(𝑎𝑀 , 𝑏𝑀) − 𝑥𝐸|, which is equivalent to

𝑛𝐴
𝑛𝐵

< 2 ̃𝑏 − 𝑏𝑀
2(𝑎𝑀 − ̃𝑎) .

Because 𝑎𝑀 − ̃𝑎 > 0, by the negative skewness, there is a population pair (𝑛𝐴, 𝑛𝐵), such that intro-
ducing 𝛾∗ is Pareto-superior to no cost-matching grant if the mean benefit of region B, ̃𝑏, is suffi-
ciently close to the median, 𝑏𝑀 , such that 𝑏𝑀 > ̃𝑏 > 𝑏𝑀/2.
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4 Extensions
4.1 Budget balance condition
In the analysis in Section 3, we assumed that each region has enough income to meet any tax pay-
ment.20 Here, we relax this assumption. We still assume that the provision of 𝑥𝐸 in (1) is feasible
in the economy: 𝑐(𝑥𝐸) < 𝐼𝐴 + 𝐼𝐵 . We discuss the importance of (i) the controllability of the break-
down level of the project, and (ii) the unbiased bargaining powers of the regions for the project to
be completed efficiently.

Concerning point (i), when the negotiation breaks down, region A’s representative 𝑎𝑅 chooses
𝑥𝐴 to maximize his payoff 𝑢(𝑥𝐴, 𝑎𝑅) + (𝐼𝐴/𝑛𝐴) − (𝛾/𝑛𝐴)𝑐(𝑥𝐴), subject to the budget conditions

𝛾
𝑛𝐴

𝑐(𝑥𝐴) ≤ 𝐼𝐴
𝑛𝐴

and 1 − 𝛾
𝑛𝐵

𝑐(𝑥𝐴) ≤ 𝐼𝐵
𝑛𝐵

. (15)

The former (latter) is the budget condition for region A (region B, respectively). Because the cost of
𝑥𝐴 is shared through the cost-matching grant of the central government, regionB’s budget condition
constrains the decision of region A’s representative. Then, 𝑥𝐴 satisfies

𝑢𝑥(𝑥𝐴, 𝑎𝑅) =
𝛾
𝑛𝐴

𝑐′(𝑥𝐴) if 𝑐(𝑥𝐴) ≤ min {𝐼𝐴𝛾 ,
𝐼𝐵

1 − 𝛾} and

𝑐(𝑥𝐴) = min {𝐼𝐴𝛾 ,
𝐼𝐵

1 − 𝛾} otherwise.
(16)

Here, (16) shows that if the income distribution is too biased such that one of 𝐼𝐴/𝛾 and 𝐼𝐵/(1−𝛾)
is too low, then 𝑥𝐴 does not maximize representative 𝑎𝑅’s surplus, 𝑢(𝑥, 𝑎𝑅) − (𝛾/𝑛𝐴)𝑐(𝑥). After
Theorem 1, we discussed that 𝛾∗ attains 𝑥𝐴(𝑎𝑀 , 𝛾∗) = 𝑥𝑛𝑏(𝑎𝑀 , 𝑏𝑀), which prevents the strategic
delegation. This is still possible if 𝑥𝐴, maximizing 𝑎𝑅’s surplus, satisfies the budget feasibility in
(15) at 𝛾 = 𝛾∗. Otherwise, the breakdown project is lower than 𝑥𝑛𝑏(𝑎𝑀 , 𝑏𝑀). Hence, 𝛾∗ may not
control the breakdown level of the project in the presence of the budget conditions. To restore this
controllability of the breakdown level of the project, it may be helpful for the central government to
redistribute the income between the regions.

We now discuss point (ii). As in Section 3, the Nash bargaining problem is formulated as

max
𝑥𝑛𝑏,𝑋𝑛𝑏

𝐴 ,𝑋𝑛𝑏
𝐵

𝛽 ln [𝑢(𝑥𝑛𝑏, 𝑎𝑅) + 𝑋𝑛𝑏
𝐴 − �̄�𝐴] + (1 − 𝛽) ln [𝑣(𝑥𝑛𝑏, 𝑏𝑅) + 𝑋𝑛𝑏

𝐵 − ̄𝑣𝐵]

subject to 𝐼𝐴 + 𝐼𝐵 = 𝑛𝐴𝑋𝑛𝑏
𝐴 + 𝑛𝐵𝑋𝑛𝑏

𝐵 + 𝑐(𝑥𝑛𝑏), 𝑋𝑛𝑏
𝐴 ≥ 0, and 𝑋𝑛𝑏

𝐵 ≥ 0,

where 𝑋𝑛𝑏
𝑖 (𝑖 = 𝐴, 𝐵) represents the per-capita consumption of private goods of region 𝑖, and the

first constraint represents the resource constraint in the economy. Furthermore, �̄�𝐴 and ̄𝑣𝐵 are the
breakdown payoffs to the representatives, such that

�̄�𝐴 ≡ 𝑢(𝑥𝐴, 𝑎𝑅) +max {0, 𝐼𝐴𝑛𝐴
− 𝛾
𝑛𝐴

𝑐(𝑥𝐴)} and ̄𝑣𝐵 ≡ 𝑣(𝑥𝐴, 𝑏𝑅) +max {0, 𝐼𝐵𝑛𝐵
− 1 − 𝛾

𝑛𝐵
𝑐(𝑥𝐴)} .

As in themain text, theNash bargaining outcome depends on the types of the representatives. Then,
we denote 𝑥𝑛𝑏 = 𝑥𝑛𝑏(𝑎𝑅, 𝑏𝑅) and 𝑋𝑛𝑏

𝑖 = 𝑋𝑛𝑏
𝑖 (𝑎𝑅, 𝑏𝑅) (𝑖 = 𝐴, 𝐵).

By solving the Nash bargaining problem, we have that if𝑋𝑛𝑏
𝑖 (𝑎𝑅, 𝑏𝑅) > 0, for all 𝑖 ∈ {𝐴, 𝐵}, then

𝑋𝑛𝑏
𝐴 = 𝛽

𝑛𝐴
(𝑛𝐴𝑢(𝑥𝑛𝑏, 𝑎𝑅) + 𝑛𝐵𝑣(𝑥𝑛𝑏, 𝑏𝑅) + 𝐼𝐴 + 𝐼𝐵 − 𝑐(𝑥𝑛𝑏) − 𝑛𝐴�̄�𝐴 − 𝑛𝐵 ̄𝑣𝐵) − (𝑢(𝑥𝑛𝑏, 𝑎𝑅) − �̄�𝐴)

𝑋𝑛𝑏
𝐵 = 1 − 𝛽

𝑛𝐵
(𝑛𝐴𝑢(𝑥𝑛𝑏, 𝑎𝑅) + 𝑛𝐵𝑣(𝑥𝑛𝑏, 𝑏𝑅) + 𝐼𝐴 + 𝐼𝐵 − 𝑐(𝑥𝑛𝑏) − 𝑛𝐴�̄�𝐴 − 𝑛𝐵 ̄𝑣𝐵)−(𝑣(𝑥𝑛𝑏, 𝑎𝑅) − ̄𝑣𝐵) ,

20A detailed discussion is presented in Section C of the online appendix.
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where 𝑥𝑛𝑏 = 𝑥𝑛𝑏(𝑎𝑅, 𝑏𝑅) and 𝑥𝐴 = 𝑥𝐴(𝑎𝑅, 𝛾), and �̄�𝐴 and ̄𝑣𝐵 are determined as above.21
By this result, we can say that the value of 𝛽 determines whether these 𝑋𝑛𝑏

𝑖 (𝑎𝑅, 𝑏𝑅) (𝑖 = 𝐴, 𝐵)
are positive. If 𝛽 is sufficiently small, then the right-hand side of 𝑋𝑛𝑏

𝐴 (𝑎𝑅, 𝑏𝑅)may be negative.22 If
𝛽 is sufficiently large, then the right-hand side of 𝑋𝑛𝑏

𝐵 (𝑎𝑅, 𝑏𝑅)may be negative. Hence, 𝑋𝑛𝑏
𝐴 (𝑎𝑅, 𝑏𝑅)

and 𝑋𝑛𝑏
𝐵 (𝑎𝑅, 𝑏𝑅) are both positive if and only if 𝛽 is intermediate (the bargaining powers of the two

regions are not biased). If 𝛽 is too large or too small, then the private good consumption of one of
the regions is zero.

In Section C of the online appendix, we show that when the bargaining powers of the regions
are biased such that the private good consumption of one of the regions is zero, the project cannot
be undertaken efficiently through self-representation. Therefore, when the budget conditions are
introduced, an argument similar to that in Section 3 can be applied if the bargaining powers are
nonbiased and the consumptions of the private good in both regions are positive.

4.2 A model of the endogenous choice of 𝛾
In this study, we examine whether a central government obtains an optimal cost-matching rate
that leads to the efficient undertaking of a project in the presence of interregional negotiations.
Hence, an endogenous choice of 𝛾 has not been examined. In this subsection, we present an analysis
based on majority voting with asymmetric weights to examine the endogenous choice of 𝛾 by the
legislature of the central government. In the model, first, a representative for the legislature of
the central government is selected through majority voting in each region. In the legislature, a
representative from a more populous region carries greater weight in the legislative process.23 The
value of 𝛾 is decided using majority voting by the representatives. That is, region A’s representative
hasmore votes than regionB’s and is decisive in the choice of 𝛾 if and only if𝑛𝐴 > 𝑛𝐵 . After the value
of 𝛾 is determined, representatives for an interregional negotiation are selected and the negotiation
is conducted, which is the same as the basic model. Without loss of generality, we assume that
𝑛𝐴 > 𝑛𝐵 , which implies that the decision-maker of 𝛾 is region A’s representative.24

Our discussion is based on the numerical example presented in Example 1. In the extended
model, we can show that the median resident of region A is decisive in the choice of 𝛾 in the central
legislature.25 Using numerical analyses based on Example 1, we examine the choice of 𝛾 by region
A’s median resident. We show how 𝛾 is related to 𝑛𝐴 and 𝑎𝑀 , taking (𝑛𝐵 , 𝑏𝑀 , 𝛽) = (1, 0.5, 0.5) as
fixed. Because the second-order condition for region A’s median resident holds if 1/√3 ≈ 0.577 <
𝛾 ≤ 1 (see (11)), we derive the optimal 𝛾 for region A’s median resident, constrained on the interval
(1/√3, 1]. Table 1 shows the relation between 𝑛𝐴, 𝑎𝑀 , 𝛾[𝑎𝑀](𝛾 chosen by 𝑎𝑀), and 𝛾∗ (the Lindahl
price in Theorem 1).26

[Insert Table 1 here]
21See Result 2 in the online appendix.
22Note that 𝑢(𝑥𝑛𝑏, 𝑎𝑅) − �̄�𝐴 and 𝑣(𝑥𝑛𝑏, 𝑎𝑅) − ̄𝑣𝐵 are independent of 𝛽.
23An example of the distribution of votes according to the population is the European Council. Until November 1,

2014, for a decision subject to a qualified majority, the number of votes in a country was distributed according to its
population; a decision passed with at least 260 out of 352 votes. Since then, the “double majority rule” has been adopted
for a qualified majority rule, under which a decision needs approval by the representatives of those countries whose
populations are at least 65 % of the total EU population. Hence, under this new system, essentially, a country with a
large population is assigned a larger weight than that assigned to a country with a small population; see https://eur-
lex.europa.eu/summary/glossary/weighting_votes_council.html.

24In their study on strategic delegation, Besley and Coate (2003) establish a model based on the “minimum winning
coalition view” for the central legislature. Thismodel yields the same result as ours if themore populous region is assumed
to form thewinning coalition. Lülfesmann (2002) provides amodel of central legislature inwhich amore populous region
is decisive in the decision of the legislature.

25See the detailed analysis in Section D in the online appendix.
26These analyses are conducted using Mathematica; the code is available upon request.
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Table 1 shows that region A’s median resident does not choose the Lindahl price as the cost-
matching rate: 𝛾[𝑎𝑀] < 𝛾∗. This is natural, because 𝛾 represents the cost-burden of the project for
region A. Hence, region A has an incentive to decrease 𝛾. However, we also find that 𝛾[𝑎𝑀] is larger
than 1/√3 in every case, suggesting that a 𝛾 that is “too low” does not necessarily benefit region A’s
median resident.

Finally, note that who is decisive in the choice of 𝛾 depends on themodel we adopt. In themodel
presented here, themedian resident of amore populous region plays a decisive role in deciding 𝛾. In
other models, other residents may be decisive in the decision. However, our purpose is to examine
the existence of the optimal cost-matching rate, not to show how 𝛾 depends on the choice of the
model.

4.3 Population mobility
We briefly discuss the stability of the population distributions when the population is mobile. To
do so, we consider the following model. Each region 𝑖 (𝑖 = 𝐴, 𝐵) is populated with 𝑛𝑖 mobile res-
idents. The total population of the economy is denoted by 𝑁 = 𝑛𝐴 + 𝑛𝐵 . Each individual has an
attachment to one of the regions, which restricts their mobility across the regions. Following stud-
ies such as Mansoorian and Myers (1993), Silva and Yamaguchi (2010), and Boadway et al. (2013),
each individual is characterized by a parameter 𝑛, which indicates an attachment to region A. The
parameter 𝑛 is assumed to be uniformly distributed over an interval [0,𝑁], such that𝑁 > 0. In con-
trast to previous studies, we assume this attachment value correlates to the benefit from the public
project reaped by an individual. That is, as 𝑛 ∈ [0,𝑁] increases, the individual with 𝑛 becomesmore
strongly attached to region A. Because region A is the region undertaking the project, the resident
in region A enjoys a greater benefit than that in region B, owing to the spillover of the project. Thus,
the individual strongly attached to region A is the person receiving a high benefit from the project.

The timing of the game is as follows: In Stage 0, the central government sets the cost-matching
rate of region A 𝛾 ∈ [0, 1]. After seeing this rate, in Stage 1, each individual chooses a region in
which to reside. After the population distribution is determined, in Stage 2, one of the residents is
chosen as the regional representative through majority voting in each region, and then the repre-
sentatives negotiate. Stage 2 is the same as Stage 2 of the basic model.

As in the basic model, let 𝑥 be a project level and 𝑇 be the per-capita transfer that region B’s
residents make to region A. The individual with 𝑛 ∈ [0,𝑁] receives the payoff

𝑈(𝑥, 𝑇; 𝑛) = 𝑛𝜇(𝑥) + 𝐼𝐴
𝑛𝐴

− 𝛾
𝑛𝐴

𝑐(𝑥) + 𝑛𝐵
𝑛𝐴

𝑇 + 𝑡𝑛

if he resides in region A, and receives the payoff

𝑉(𝑥, 𝑇; 𝑛) = 𝑛𝜇(𝑥) + 𝐼𝐵
𝑛𝐵

− 1 − 𝛾
𝑛𝐵

𝑐(𝑥) − 𝑇 + 𝑡(𝑁 − 𝑛)

if he resides in region B, where 𝑡 > 0 is a parameter of attachment intensity. Hence, the term 𝑡𝑛
represents the attachment benefit of residing in region A, and the term 𝑡(𝑁 − 𝑛) represents the
attachment benefit of residing in region B. The benefit from the project consists of 𝑛 and a concave
function 𝜇(𝑥). The attachment benefits appear irrespective of whether the interregional negotiation
succeeds or fails, indicating that the benefits do not affect the negotiation outcome. Therefore, the
analysis of Stage 3 of this extended model is the same as that of Stage 2 of the basic model.

The condition of the migration equilibrium when it is interior is 𝑈(𝑥, 𝑇; 𝑛𝑚) = 𝑉(𝑥, 𝑇; 𝑛𝑚),
providing for the individual with the attachment 𝑛𝑚 being indifferent between residing in regions
A and B. Furthermore, Proposition 4 shows the stability of the population distribution generated by
the migration equilibrium.

Proposition 4 Suppose 𝑛𝑚 ∈ [0,𝑁] satisfies themigration equilibrium condition𝑈(𝑥𝑛𝑏, 𝑇𝑛𝑏; 𝑛𝑚) =
𝑉(𝑥𝑛𝑏, 𝑇𝑛𝑏; 𝑛𝑚). Then, 𝑈(𝑥𝑛𝑏, 𝑇𝑛𝑏; 𝑛) > 𝑉(𝑥𝑛𝑏, 𝑇𝑛𝑏; 𝑛), for all 𝑛 ∈ (𝑛𝑚, 𝑁], and 𝑈(𝑥𝑛𝑏, 𝑇𝑛𝑏; 𝑛) <
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𝑉(𝑥𝑛𝑏, 𝑇𝑛𝑏; 𝑛), for all 𝑛 ∈ [0, 𝑛𝑚). Therefore, no individual is made better off by changing the resi-
dential choice.

The migration equilibrium determines the population distribution, such that 𝒜 = [𝑛𝑚, 𝑁] and
ℬ = [0, 𝑛𝑚]. Proposition 4 states that the population distribution is stable in that no individuals are
made better off by unilaterally changing their living regions. Our basic model is general enough to
treat the population distribution at the migration equilibrium because no conditions are imposed
on the relative position between𝒜 and ℬ in the basic model.

Finally, we examine the kinds of population distributions supported at a migration equilibrium.
This is discussed based on Example 1, because it is very difficult to characterize the equilibrium
population distributions under our setting using general benefit and cost functions. We focus on the
relation between the cost-matching rate 𝛾 and the equilibrium population distribution. We use the
parameters of Table 1, with𝑛𝐵 = 1, 𝑏𝑀 = 0.5, 𝛽 = 0.5, 𝐼𝐴 = 𝐼𝐵 = 10, and 𝑡 = 1. Here, 𝛾𝑆 in Table 2 is
the cost-matching rate that attains the equilibrium condition𝑈(𝑥𝑛𝑏, 𝑇𝑛𝑏; 𝑛𝑚) = 𝑉(𝑥𝑛𝑏, 𝑇𝑛𝑏; 𝑛𝑚).27
Table 2 shows the relation between 𝑛𝐴, 𝑎𝑀 , and 𝛾𝑆 .

[Insert Table 2 here]

Table 2 shows an interesting tendency that, depending on the value 𝛾, various population dis-
tributions may be stable. In particular, unlike in previous studies, regions A and B play asymmetric
roles, where region A undertakes the project, but region B does not. Even under the asymmetric
role, the number of residents may be the same, as shown in Case (1). However, different numbers
of residents in both regions are also stable for some 𝛾s, as shown in Cases (2)–(7).

5 Conclusion
We have examined whether a cost-matching grant by a central government restores the efficiency
of an interregional negotiation lost through the strategic delegation of representatives. We show
that a grant achieves the efficient negotiation outcome if and only if (i) the cost-matching rate is
the Lindahl price, and (ii) the manipulability of the negotiation breakdown outcome is sufficiently
weak. The introduction of a grant generates a new kind of manipulation of negotiation breakdown
outcomes. We find that the strength of the new manipulability is linked to whether the second-
order condition for the median resident in the project region (region A) holds. Our result suggests a
positive aspect to achieving an efficient project in that the central government obtains the optimal
cost-matching rate if the manipulability is relatively weak. In addition, we show that the possibil-
ity of a re-election after a negotiation breaks down helps the cost-matching grant yield an efficient
project. This re-election adjusts the breakdown outcome such that an optimal cost-matching rate
that achieves an efficient project always exists. To the best of our knowledge, few studies on strategic
delegation problems have considered whether a government policy alleviates the strategic delega-
tion problem. Thus, our contribution is to clarify the conditions under which a central government
may or may not obtain the optimal grant that solves the strategic delegation problem.

Several problems remain that need to be addressed in future work. It is important to consider
how the central government implements the optimal cost-matching grant. From our results, the
optimal grant depends on the regions’ benefit information, which is usually private information.
Hence, it might be necessary to extract such information by applyingmethods of mechanism design
theory. Furthermore, an extension to our setting that includes multiple regions that benefit from
public projects would also be interesting. Themodels of previous studies (e.g., Ray and Vohra, 1997,
2001; Dixit and Olson, 2000; Matsushima and Shinohara, 2019) might be useful to this extension.

27The value of 𝛾𝑆 is calculated using Mathematica; the code is available upon request.
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𝑛𝐴 𝑎𝑀 𝛾[𝑎𝑀] 𝛾∗
Case (1) 1 1.5 0.586363 0.75
Case (2) 1.5 1.75 0.595239 0.84
Case (3) 2 2 0.598785 0.888889
Case (4) 2.5 2.25 0.600621 0.918367
Case (5) 3 2.5 0.601721 0.9375
Case (6) 3.5 2.75 0.602418 0.950617
Case (7) 4 3 0.602904 0.96

Table 1: The constrained optimal cost-matching rate for region A’s median resident
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𝑛𝐴 𝑎𝑀 𝛾𝑆
Case (1) 1 1.5 0.581179
Case (2) 1.5 1.75 0.600014
Case (3) 2 2 0.638465
Case (4) 2.5 2.25 0.677132
Case (5) 3 2.5 0.712904
Case (6) 3.5 2.75 0.744515
Case (7) 4 3 0.771707

Table 2: The migration equilibrium and the cost-matching rate
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Appendix

Single-crossing properties of preferences
We show that residents’ preferences, represented by 𝑈(𝑥𝑛𝑏, 𝑇𝑛𝑏; 𝑎) and 𝑉(𝑥𝑛𝑏, 𝑇𝑛𝑏; 𝑏) in (6) and
(7), respectively, in Section 3.2, satisfy the single-crossing property of Gans and Smart (1996).

Let 𝑎𝑅, 𝑎′𝑅, 𝑎′, 𝑎 ∈ 𝒜, such that 𝑎𝑅 > 𝑎′𝑅 and 𝑎′ > 𝑎. Let 𝑏𝑅 ∈ ℬ. We show that

if 𝑈(𝑥𝑛𝑏(𝑎𝑅, 𝑏𝑅), 𝑇𝑛𝑏(𝑎𝑅, 𝑏𝑅); 𝑎) ≥ 𝑈(𝑥𝑛𝑏(𝑎′𝑅, 𝑏𝑅), 𝑇𝑛𝑏(𝑎′𝑅, 𝑏𝑅); 𝑎),
then 𝑈(𝑥𝑛𝑏(𝑎𝑅, 𝑏𝑅), 𝑇𝑛𝑏(𝑎𝑅, 𝑏𝑅); 𝑎′) > 𝑈(𝑥𝑛𝑏(𝑎′𝑅, 𝑏𝑅), 𝑇𝑛𝑏(𝑎′𝑅, 𝑏𝑅); 𝑎′).

By the hypothesis,

𝑢(𝑥𝑛𝑏(𝑎𝑅, 𝑏𝑅), 𝑎) − 𝑢(𝑥𝑛𝑏(𝑎′𝑅, 𝑏𝑅), 𝑎) ≥
𝛾
𝑛𝐴

(𝑐(𝑥𝑛𝑏(𝑎𝑅, 𝑏𝑅), 𝑎) − 𝑐(𝑥𝑛𝑏(𝑎′𝑅, 𝑏𝑅), 𝑎))

−𝑛𝐵𝑛𝐴
(𝑇𝑛𝑏(𝑎𝑅, 𝑏𝑅) − 𝑇𝑛𝑏(𝑎′𝑅, 𝑏𝑅)) .

(17)

By 𝑎𝑅 > 𝑎′𝑅, 𝑥𝑛𝑏(𝑎𝑅, 𝑏𝑅) > 𝑥𝑛𝑏(𝑎′𝑅, 𝑏𝑅), 𝑎′ > 𝑎, and 𝑢𝑥𝑎 > 0,

𝑢(𝑥𝑛𝑏(𝑎𝑅, 𝑏𝑅), 𝑎) − 𝑢(𝑥𝑛𝑏(𝑎′𝑅, 𝑏𝑅), 𝑎) < 𝑢(𝑥𝑛𝑏(𝑎𝑅, 𝑏𝑅), 𝑎′) − 𝑢(𝑥𝑛𝑏(𝑎′𝑅, 𝑏𝑅), 𝑎′).

In conclusion,

𝑢(𝑥𝑛𝑏(𝑎𝑅, 𝑏𝑅), 𝑎′) − 𝑢(𝑥𝑛𝑏(𝑎′𝑅, 𝑏𝑅), 𝑎′) >
𝛾
𝑛𝐴

(𝑐(𝑥𝑛𝑏(𝑎𝑅, 𝑏𝑅), 𝑎) − 𝑐(𝑥𝑛𝑏(𝑎′𝑅, 𝑏𝑅), 𝑎))

−𝑛𝐵𝑛𝐴
(𝑇𝑛𝑏(𝑎𝑅, 𝑏𝑅) − 𝑇𝑛𝑏(𝑎′𝑅, 𝑏𝑅)) ,

which implies 𝑈(𝑥𝑛𝑏(𝑎𝑅, 𝑏𝑅), 𝑇𝑛𝑏(𝑎𝑅, 𝑏𝑅); 𝑎′) > 𝑈(𝑥𝑛𝑏(𝑎′𝑅, 𝑏𝑅), 𝑇𝑛𝑏(𝑎′𝑅, 𝑏𝑅); 𝑎′).
Similarly, we can show that for all 𝑎𝑅 ∈ 𝒜 and all 𝑏𝑅, 𝑏′𝑅, 𝑏′, 𝑏 ∈ ℬ, such that 𝑏𝑅 > 𝑏′𝑅 and

𝑏′ > 𝑏, 𝑉(𝑥𝑛𝑏(𝑎𝑅, 𝑏𝑅), 𝑇𝑛𝑏(𝑎𝑅, 𝑏𝑅); 𝑏) ≥ 𝑉(𝑥𝑛𝑏(𝑎𝑅, 𝑏′𝑅), 𝑇𝑛𝑏(𝑎𝑅, 𝑏′𝑅); 𝑏) implies
𝑉(𝑥𝑛𝑏(𝑎𝑅, 𝑏𝑅), 𝑇𝑛𝑏(𝑎𝑅, 𝑏𝑅); 𝑏′) > 𝑉(𝑥𝑛𝑏(𝑎𝑅, 𝑏′𝑅), 𝑇𝑛𝑏(𝑎𝑅, 𝑏′𝑅); 𝑏′).

Similarly, the preferences represented by 𝑈(𝑥𝑛𝑏, 𝑇𝑛𝑏; 𝑎) and 𝑉(𝑥𝑛𝑏, 𝑇𝑛𝑏; 𝑏) in Section 3.3 can
be shown to be single-crossing. Note that the right-hand side of (17) is common to all residents in
region A in any model.

Proofs
Proof of Lemma 1
Differentiating the Nash product with respect to 𝑥 and 𝑇, we obtain from the first-order condition
that

𝛽 (𝑢𝑥(𝑥𝑛𝑏, 𝑎𝑅) −
𝛾
𝑛𝐴
𝑐′(𝑥𝑛𝑏))

𝑢(𝑥𝑛𝑏, 𝑎𝑅) +
𝐼𝐴
𝑛𝐴

− 𝛾
𝑛𝐴
𝑐(𝑥𝑛𝑏) + 𝑛𝐵

𝑛𝐴
𝑇𝑛𝑏 −𝑈 (𝑥𝐴, 0; 𝑎𝑅)

+
(1 − 𝛽) (𝑣𝑥(𝑥𝑛𝑏, 𝑏𝑅) −

1−𝛾
𝑛𝐵

𝑐′(𝑥𝑛𝑏))

𝑣(𝑥𝑛𝑏, 𝑏𝑅) +
𝐼𝐵
𝑛𝐵

− 1−𝛾
𝑛𝐵

𝑐(𝑥𝑛𝑏) − 𝑇𝑛𝑏 − 𝑉 (𝑥𝐴, 0; 𝑏𝑅)
= 0

and

𝛽 (𝑛𝐵
𝑛𝐴
)

𝑢(𝑥𝑛𝑏, 𝑎𝑅) +
𝐼𝐴
𝑛𝐴

− 𝛾
𝑛𝐴
𝑐(𝑥𝑛𝑏) + 𝑛𝐵

𝑛𝐴
𝑇𝑛𝑏 −𝑈 (𝑥𝐴, 0; 𝑎𝑅)

= 1 − 𝛽
𝑣(𝑥𝑛𝑏, 𝑏𝑅) +

𝐼𝐵
𝑛𝐵

− 1−𝛾
𝑛𝐵

𝑐(𝑥𝑛𝑏) − 𝑇𝑛𝑏 − 𝑉 (𝑥𝐴, 0; 𝑏𝑅)
.

Combining these conditions yields (4) and (5).
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Proof of Lemma 2
First, note that the differential coefficient of 𝑥𝐴 with respect to 𝑎𝑅 and that of 𝑥𝑛𝑏 with respect to
𝑎𝑅 and 𝑏𝑅 are positive. As (3) shows, 𝜕𝑥𝐴(𝑎𝑅, 𝛾)/𝜕𝑎𝑅 is positive. Differentiating (4) with respect to
𝑎𝑅 and 𝑏𝑅 yields

𝜕𝑥𝑛𝑏(𝑎𝑅, 𝑏𝑅)
𝜕𝑎𝑅

= − 𝑛𝐴𝑢𝑥𝑎(𝑥𝑛𝑏, 𝑎𝑅)
𝑛𝐴𝑢𝑥𝑥(𝑥𝑛𝑏, 𝑎𝑅) + 𝑛𝐵𝑣𝑥𝑥(𝑥𝑛𝑏, 𝑏𝑅) − 𝑐″(𝑥𝑛𝑏) > 0

and 𝜕𝑥𝑛𝑏(𝑎𝑅, 𝑏𝑅)
𝜕𝑏𝑅

= − 𝑛𝐵𝑣𝑥𝑏(𝑥𝑛𝑏, 𝑏𝑅)
𝑛𝐴𝑢𝑥𝑥(𝑥𝑛𝑏, 𝑎𝑅) + 𝑛𝐵𝑣𝑥𝑥(𝑥𝑛𝑏, 𝑏𝑅) − 𝑐″(𝑥𝑛𝑏) > 0.

(18)

Differentiating 𝑈 (𝑥𝑛𝑏, 𝑇𝑛𝑏; 𝑎𝑀) with respect to 𝑎𝑅 yields

𝜕 𝑈(𝑥𝑛𝑏, 𝑇𝑛𝑏; 𝑎𝑀)
𝜕 𝑎𝑅

= 𝜕𝑥𝑛𝑏
𝜕𝑎𝑅

[𝑢𝑥(𝑥𝑛𝑏, 𝑎𝑀) − 𝑢𝑥(𝑥𝑛𝑏, 𝑎𝑅) +
𝛽
𝑛𝐴

(𝑛𝐴𝑢𝑥(𝑥𝑛𝑏, 𝑎𝑅) + 𝑛𝐵𝑣𝑥(𝑥𝑛𝑏, 𝑏𝑅) − 𝑐′(𝑥𝑛𝑏))]

+ 𝜕𝑥𝐴
𝜕𝑎𝑅

[𝑢𝑥(𝑥𝐴, 𝑎𝑅) −
𝛾
𝑛𝐴

𝑐′(𝑥𝐴) − 𝛽
𝑛𝐴

(𝑛𝐴𝑢𝑥(𝑥𝐴, 𝑎𝑅) + 𝑛𝐵𝑣𝑥(𝑥𝐴, 𝑏𝑅) − 𝑐′(𝑥𝐴))]

− (1 − 𝛽) [𝑢𝑎(𝑥𝑛𝑏, 𝑎𝑅) − 𝑢𝑎(𝑥𝐴, 𝑎𝑅)]

= 𝜕𝑥𝑛𝑏
𝜕𝑎𝑅

[𝑢𝑥(𝑥𝑛𝑏, 𝑎𝑀) − 𝑢𝑥(𝑥𝑛𝑏, 𝑎𝑅)]

− ( 𝛽
𝑛𝐴

) 𝜕𝑥
𝐴

𝜕𝑎𝑅
[𝑛𝐴𝑢𝑥(𝑥𝐴, 𝑎𝑅) + 𝑛𝐵𝑣𝑥(𝑥𝐴, 𝑏𝑅) − 𝑐′(𝑥𝐴)]

− (1 − 𝛽) [𝑢𝑎(𝑥𝑛𝑏, 𝑎𝑅) − 𝑢𝑎(𝑥𝐴, 𝑎𝑅)] .

The last equality follows from the first-order conditions (2) and (4).
Similarly, from

𝜕 𝑉(𝑥𝑛𝑏, 𝑇𝑛𝑏; 𝑏𝑀)
𝜕 𝑏𝑅

= 𝜕𝑥𝑛𝑏
𝜕𝑏𝑅

[𝑣𝑥(𝑥𝑛𝑏, 𝑏𝑀) − 𝑣𝑥(𝑥𝑛𝑏, 𝑏𝑅)] − 𝑣𝑏(𝑥𝑛𝑏, 𝑏𝑅) + 𝑣𝑏(𝑥𝐴, 𝑏𝑅)

+ (1 − 𝛽
𝑛𝐵

) 𝜕𝑥
𝑛𝑏

𝜕𝑏𝑅
[𝑛𝐴𝑢𝑥(𝑥𝑛𝑏, 𝑎𝑅) + 𝑛𝐵𝑣𝑥(𝑥𝑛𝑏, 𝑏𝑅) − 𝑐′(𝑥𝑛𝑏)]

+ (1 − 𝛽) [𝑣𝑏(𝑥𝑛𝑏, 𝑏𝑅) − 𝑣𝑏(𝑥𝐴, 𝑏𝑅)] ,

we obtain (10).

Proof of Proposition 1
From (2) and (4), it follows that for any pair (𝑎𝑅, 𝑏𝑅) ∈ 𝒜 × ℬ, 𝑥𝐴(𝑎𝑅, 1) < 𝑥𝑛𝑏(𝑎𝑅, 𝑏𝑅). By
𝑥𝐴(𝑎𝑅, 1) < 𝑥𝑛𝑏(𝑎𝑅, 𝑏𝑅),

𝑛𝐴𝑢𝑥(𝑥𝐴, 𝑎𝑅) + 𝑛𝐵𝑣𝑥(𝑥𝐴, 𝑏𝑅) − 𝑐′(𝑥𝐴) > 0 and 𝑢𝑎(𝑥𝑛𝑏, 𝑎𝑅) − 𝑢𝑎(𝑥𝐴, 𝑎𝑅) > 0.

By these conditions, the second and third lines in (9) are negative. Hence, in order for the first-
order condition to be met, it follows that 𝑢𝑥(𝑥𝑛𝑏, 𝑎𝑀) − 𝑢𝑥(𝑥𝑛𝑏, 𝑎∗𝑅) > 0, which implies 𝑎𝑀 > 𝑎∗𝑅.
Similarly, from (10), we find that 𝑏𝑀 ≥ 𝑏∗𝑅 with equality if 𝛽 = 0. ■

Proof of Theorem 1
We establish several steps to show this theorem. First, we show Lemma3.

Proof ofLemma3. Because𝑛𝐴𝑢𝑥(𝑥𝑛𝑏(𝑎𝑀 , 𝑏𝑀), 𝑎𝑀)+𝑛𝐵𝑣𝑥(𝑥𝑛𝑏(𝑎𝑀 , 𝑏𝑀), 𝑏𝑀) = 𝑐′(𝑥𝑛𝑏(𝑎𝑀 , 𝑏𝑀)),
we have

𝑢𝑥(𝑥𝑛𝑏(𝑎𝑀 , 𝑏𝑀), 𝑎𝑀) = ( 𝑛𝐴𝑢𝑥(𝑥𝑛𝑏(𝑎𝑀 , 𝑏𝑀), 𝑎𝑀)
𝑛𝐴𝑢𝑥(𝑥𝑛𝑏(𝑎𝑀 , 𝑏𝑀), 𝑎𝑀) + 𝑛𝐵𝑣𝑥(𝑥𝑛𝑏(𝑎𝑀 , 𝑏𝑀), 𝑏𝑀)

) 1
𝑛𝐴

𝑐′(𝑥𝑛𝑏(𝑎𝑀 , 𝑏𝑀)).
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If 𝛾 ≥ 𝛾∗, then 𝑢𝑥(𝑥𝑛𝑏(𝑎𝑀 , 𝑏𝑀), 𝑎𝑀) ≤ (𝛾/𝑛𝐴)𝑐′(𝑥𝑛𝑏(𝑎𝑀 , 𝑏𝑀)). Because 𝑢𝑥(𝑥𝐴(𝑎𝑀 , 𝛾), 𝑎𝑀) =
(𝛾/𝑛𝐴)𝑐′(𝑥𝐴(𝑎𝑀 , 𝛾)) and 𝑢𝑥 is nonincreasing and 𝑐′ is increasing in 𝑥, we find that 𝑥𝐴(𝑎𝑀 , 𝛾) ≤
𝑥𝑛𝑏(𝑎𝑀 , 𝑏𝑀). Similarly, we find that if 𝛾 < 𝛾∗, then 𝑥𝐴(𝑎𝑀 , 𝛾) > 𝑥𝑛𝑏(𝑎𝑀 , 𝑏𝑀). ■

Claim1 provides the condition underwhich the self-representation is a solution of the first-order
conditions.

Claim 1 (𝑎𝑅, 𝑏𝑅) = (𝑎𝑀 , 𝑏𝑀) is a solution of the first-order conditions (8) if and only if 𝛾 = 𝛾∗.

Proof of Claim 1. (If-part) If 𝛾 = 𝛾∗, then 𝑥𝐴(𝑎𝑀 , 𝛾∗) = 𝑥𝑛𝑏(𝑎𝑀 , 𝑏𝑀), by Lemma 3. Then,

𝑢𝑎(𝑥𝑛𝑏(𝑎𝑀 , 𝑏𝑀), 𝑎𝑀) = 𝑢𝑎(𝑥𝐴(𝑎𝑀 , 𝛾∗), 𝑎𝑀), 𝑣𝑏(𝑥𝑛𝑏(𝑎𝑀 , 𝑏𝑀), 𝑏𝑀) = 𝑣𝑏(𝑥𝐴(𝑎𝑀 , 𝛾∗), 𝑏𝑀),
and 𝑢𝑥(𝑥𝐴(𝑎𝑀 , 𝛾∗), 𝑎𝑀) + 𝑣𝑥(𝑥𝐴(𝑎𝑀 , 𝛾∗), 𝑏𝑀) = 𝑐′(𝑥𝐴(𝑎𝑀 , 𝛾∗)).

If 𝛾 = 𝛾∗ and (𝑎𝑅, 𝑏𝑅) = (𝑎𝑀 , 𝑏𝑀), then by (9),

𝜕𝑈(𝑥𝑛𝑏, 𝑇𝑛𝑏; 𝑎𝑀)
𝜕𝑎𝑅

= 𝜕𝑥𝑛𝑏
𝜕𝑎𝑅

[𝑢𝑥(𝑥𝑛𝑏(𝑎𝑀 , 𝑏𝑀), 𝑎𝑀) − 𝑢𝑥(𝑥𝑛𝑏(𝑎𝑀 , 𝑏𝑀), 𝑎𝑀)]

− ( 𝛽
𝑛𝐴

) 𝜕𝑥
𝐴

𝜕𝑎𝑅
[𝑛𝐴𝑢𝑥(𝑥𝐴(𝑎𝑀 , 𝛾∗), 𝑎𝑀) + 𝑛𝐵𝑣𝑥(𝑥𝐴(𝑎𝑀 , 𝛾∗), 𝑏𝑀) − 𝑐′(𝑥𝐴(𝑎𝑀 , 𝛾∗))]

− (1 − 𝛽) [𝑢𝑎(𝑥𝑛𝑏(𝑎𝑀 , 𝑏𝑀), 𝑎𝑀) − 𝑢𝑎(𝑥𝐴(𝑎𝑀 , 𝛾∗), 𝑎𝑀)] = 0,

and by (10),

𝜕𝑉(𝑥𝑛𝑏, 𝑇𝑛𝑏; 𝑏𝑀)
𝜕𝑏𝑅

= 𝜕𝑥𝑛𝑏
𝜕𝑏𝑅

[𝑣𝑥(𝑥𝑛𝑏(𝑎𝑀 , 𝑏𝑀), 𝑏𝑀) − 𝑣𝑥(𝑥𝑛𝑏(𝑎𝑀 , 𝑏𝑀), 𝑏𝑀)]

− 𝛽 [𝑣𝑏(𝑥𝑛𝑏(𝑎𝑀 , 𝑏𝑀), 𝑏𝑀) − 𝑣𝑏(𝑥𝐴(𝑎𝑀 , 𝛾), 𝑏𝑀)] = 0.

Thus, (𝑎𝑅, 𝑏𝑅) = (𝑎𝑀 , 𝑏𝑀) satisfies (8).
(Only-if-part) Suppose (𝑎𝑅, 𝑏𝑅) = (𝑎𝑀 , 𝑏𝑀), but that 𝛾 ≠ 𝛾∗. Without loss of generality, suppose

𝛾 > 𝛾∗. Denote 𝑥𝑛𝑏 = 𝑥𝑛𝑏(𝑎𝑀 , 𝑏𝑀) and 𝑥𝐴 = 𝑥𝐴(𝑎𝑀 , 𝛾), for simplicity. Then, 𝑥𝑛𝑏 > 𝑥𝐴, which
implies 𝑛𝐴𝑢𝑥(𝑥𝐴, 𝑎𝑀) + 𝑛𝐵𝑣𝑥(𝑥𝐴, 𝑏𝑀) − 𝑐′(𝑥𝐴) > 0. Because 𝑢𝑎𝑥 > 0 and 𝑣𝑏𝑥 > 0, we have
𝑢𝑎(𝑥𝑛𝑏, 𝑎𝑀) − 𝑢𝑎(𝑥𝐴, 𝑎𝑀) > 0 and 𝑣𝑏(𝑥𝑛𝑏, 𝑏𝑀) − 𝑣𝑏(𝑥𝐴, 𝑏𝑀) > 0. Then, from (9) and (10),

𝜕𝑈(𝑥𝑛𝑏, 𝑇𝑛𝑏, 𝑎𝑀)
𝜕𝑎𝑅

|||(𝑎𝑅,𝑏𝑅)=(𝑎𝑀,𝑏𝑀)
= −( 𝛽

𝑛𝐴
) 𝜕𝑥

𝐴

𝜕𝑎𝑅
[𝑛𝐴𝑢𝑥(𝑥𝐴, 𝑎𝑀) + 𝑛𝐵𝑣𝑥(𝑥𝐴, 𝑏𝑀) − 𝑐′(𝑥𝐴))]

− (1 − 𝛽) [𝑢𝑎(𝑥𝑛𝑏, 𝑎𝑀) − 𝑢𝑎(𝑥𝐴, 𝑎𝑀)] < 0

and
𝜕𝑉(𝑥𝑛𝑏, 𝑇𝑛𝑏; 𝑏𝑀)

𝜕𝑏𝑅
|||(𝑎𝑅,𝑏𝑅)=(𝑎𝑀,𝑏𝑀)

= −𝛽 (𝑣𝑏(𝑥𝑛𝑏, 𝑏𝑀) − 𝑣𝑏(𝑥𝐴, 𝑏𝑀)) ≤ 0.

Hence, (𝑎𝑅, 𝑏𝑅) = (𝑎𝑀 , 𝑏𝑀) does not satisfy (8), which is a contradiction. ■

In Claim 2, we show that the second-order condition for region B’s median resident is always
satisfied at 𝛾 = 𝛾∗ and (𝑎𝑅, 𝑏𝑅) = (𝑎𝑀 , 𝑏𝑀).

Claim 2 It follows that

𝜕2 𝑉(𝑥𝑛𝑏, 𝑇𝑛𝑏; 𝑏𝑀)
𝜕 𝑏2𝑅

|
|
|(𝑎𝑅,𝑏𝑅)=(𝑎𝑀,𝑏𝑀),𝛾=𝛾∗

< 0.
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Proof of Claim 2. Differentiating (10) with respect to 𝑏𝑅 yields

𝜕2 𝑉(𝑥𝑛𝑏, 𝑇𝑛𝑏; 𝑏𝑀)
𝜕 𝑏2𝑅

= 𝜕2𝑥𝑛𝑏
𝜕𝑏2𝑅

(𝑣𝑥(𝑥𝑛𝑏, 𝑏𝑀) − 𝑣𝑥(𝑥𝑛𝑏, 𝑏𝑅))

+ (𝜕𝑥
𝑛𝑏

𝜕𝑏𝑅
)
2

(𝑣𝑥𝑥(𝑥𝑛𝑏, 𝑏𝑀) − 𝑣𝑥𝑥(𝑥𝑛𝑏, 𝑏𝑅)) − 𝑣𝑏𝑥(𝑥𝑛𝑏, 𝑏𝑅)
𝜕𝑥𝑛𝑏
𝜕𝑏𝑅

(19)

− 𝛽 (𝑣𝑏𝑏(𝑥𝑛𝑏, 𝑏𝑅) − 𝑣𝑏𝑏(𝑥𝐴, 𝑏𝑅) + 𝑣𝑏𝑥(𝑥𝑛𝑏, 𝑏𝑅)
𝜕𝑥𝑛𝑏
𝜕𝑏𝑅

) .

At 𝛾 = 𝛾∗ and (𝑎𝑅, 𝑏𝑅) = (𝑎𝑀 , 𝑏𝑀), 𝑥𝑛𝑏(𝑎𝑀 , 𝑏𝑀) = 𝑥𝐴(𝑎𝑀 , 𝛾∗), by Lemma 3. Thus, by (19), we
have

𝜕2 𝑉(𝑥𝑛𝑏, 𝑇𝑛𝑏; 𝑏𝑀)
𝜕 𝑏2𝑅

= −𝑣𝑏𝑥(𝑥𝑛𝑏, 𝑏𝑀)
𝜕𝑥𝑛𝑏
𝜕𝑏𝑅

− 𝛽 (𝑣𝑏𝑥(𝑥𝑛𝑏, 𝑏𝑀)
𝜕𝑥𝑛𝑏
𝜕𝑏𝑅

) ,

which is negative because 𝜕𝑥𝑛𝑏/𝜕𝑏𝑅 > 0 and 𝑣𝑏𝑥(𝑥𝑛𝑏, 𝑏𝑀) > 0. ■

In Claim 3, we provide a necessary and sufficient condition for the second-order condition of
region A’s median resident to be satisfied.

Claim 3 There exists a positive real �̄�, such that

𝜕2𝑈(𝑥𝑛𝑏, 𝑇𝑛𝑏; 𝑎𝑀)
𝜕 𝑎2𝑅

|
|
|(𝑎𝑅,𝑏𝑅)=(𝑎𝑀,𝑏𝑀),𝛾=𝛾∗

< 0 if and only if 𝜕𝑥𝐴(𝑎𝑅, 𝛾)
𝜕𝑎𝑅

|
|
|𝑎𝑅=𝑎𝑀,𝛾=𝛾∗

< �̄�.

Proof of Claim 3. Differentiating (9) with respect to 𝑎𝑅 yields

𝜕2𝑈(𝑥𝑛𝑏, 𝑇𝑛𝑏; 𝑎𝑀)
𝜕 𝑎2𝑅

= 𝜕2𝑥𝑛𝑏
𝜕𝑎2𝑅

(𝑢𝑥(𝑥𝑛𝑏, 𝑎𝑀) − 𝑢𝑥(𝑥𝑛𝑏, 𝑎𝑅))

+ (𝜕𝑥
𝑛𝑏

𝜕𝑎𝑅
)
2

(𝑢𝑥𝑥(𝑥𝑛𝑏, 𝑎𝑀) − 𝑢𝑥𝑥(𝑥𝑛𝑏, 𝑎𝑅))

− 𝑢𝑥𝑎(𝑥𝑛𝑏, 𝑎𝑅)
𝜕𝑥𝑛𝑏
𝜕𝑎𝑅

− ( 𝛽
𝑛𝐴

) 𝜕
2𝑥𝐴
𝜕𝑎2𝑅

(𝑛𝐴𝑢𝑥(𝑥𝐴, 𝑎𝑅) + 𝑛𝐵𝑣𝑥(𝑥𝐴, 𝑏𝑅) − 𝑐′(𝑥𝐴))

− ( 𝛽
𝑛𝐴

) (𝜕𝑥
𝐴

𝜕𝑎𝑅
)
2

(𝑛𝐴𝑢𝑥𝑥(𝑥𝐴, 𝑎𝑅) + 𝑛𝐵𝑣𝑥𝑥(𝑥𝐴, 𝑏𝑅) − 𝑐″(𝑥𝐴))

− 𝑛𝐴𝑢𝑥𝑎(𝑥𝐴, 𝑎𝑅) (
𝛽
𝑛𝐴

) 𝜕𝑥
𝐴

𝜕𝑎𝑅
− (1 − 𝛽) (𝑢𝑎𝑎(𝑥𝑛𝑏, 𝑎𝑅) + 𝑢𝑎𝑥(𝑥𝑛𝑏, 𝑎𝑅)

𝜕𝑥𝑛𝑏
𝜕𝑎𝑅

− 𝑢𝑎𝑎(𝑥𝐴, 𝑎𝑅) − 𝑢𝑎𝑥(𝑥𝐴, 𝑎𝑅)
𝜕𝑥𝐴
𝜕𝑎𝑅

) ,
(20)

where 𝑥𝑛𝑏 = 𝑥𝑛𝑏(𝑎𝑅, 𝑏𝑅) and 𝑥𝐴 = 𝑥𝐴(𝑎𝑅, 𝛾). Substituting (𝑎𝑅, 𝑏𝑅) = (𝑎𝑀 , 𝑏𝑀) and 𝛾 = 𝛾∗ into
(20) yields

𝜕2𝑈(𝑥𝑛𝑏, 𝑇𝑛𝑏; 𝑎𝑀)
𝜕 𝑎2𝑅

= −𝑢𝑥𝑎(𝑥𝑛𝑏, 𝑎𝑀)
𝜕𝑥𝑛𝑏
𝜕𝑎𝑅

− ( 𝛽
𝑛𝐴

) (𝜕𝑥
𝐴

𝜕𝑎𝑅
)
2

(𝑛𝐴𝑢𝑥𝑥(𝑥𝐴, 𝑎𝑀) + 𝑛𝐵𝑣𝑥𝑥(𝑥𝐴, 𝑏𝑀) − 𝑐″(𝑥𝐴))

− 𝑢𝑥𝑎(𝑥𝐴, 𝑎𝑀)𝛽
𝜕𝑥𝐴
𝜕𝑎𝑅

− (1 − 𝛽) (𝑢𝑎𝑥(𝑥𝑛𝑏, 𝑎𝑀)
𝜕𝑥𝑛𝑏
𝜕𝑎𝑅

− 𝑢𝑎𝑥(𝑥𝐴, 𝑎𝑀)
𝜕𝑥𝐴
𝜕𝑎𝑅

) ,

26



because on the right-hand side of (20), the first and second lines are zero, the fourth line is zero by
𝑥𝐴(𝑎𝑀 , 𝛾∗) = 𝑥𝑛𝑏(𝑎𝑀 , 𝑏𝑀), and 𝑢𝑎𝑎(𝑥𝐴, 𝑎𝑀) = 𝑢𝑎𝑎(𝑥𝑛𝑏, 𝑎𝑀) = 0. Rearranging (20) yields

𝜕2𝑈(𝑥𝑛𝑏, 𝑇𝑛𝑏; 𝑎𝑀)
𝜕 𝑎2𝑅

= −( 𝛽
𝑛𝐴

) (𝑛𝐴𝑢𝑥𝑥(𝑥𝐴, 𝑎𝑀) + 𝑛𝐵𝑣𝑥𝑥(𝑥𝐴, 𝑏𝑀) − 𝑐″(𝑥𝐴)) (𝜕𝑥
𝐴

𝜕𝑎𝑅
)
2

+ (1 − 2𝛽)𝑢𝑥𝑎(𝑥𝐴, 𝑎𝑀)
𝜕𝑥𝐴
𝜕𝑎𝑅

+ (𝛽 − 2)𝑢𝑥𝑎(𝑥𝑛𝑏, 𝑎𝑀)
𝜕𝑥𝑛𝑏
𝜕𝑎𝑅

.
(21)

The right-hand side of (21) can be viewed as a quadratic function of 𝜕𝑥𝐴/𝜕𝑎𝑅. Note that in (21), the
coefficient of (𝜕𝑥𝐴/𝜕𝑎𝑅)2 is positive and the final term is negative, implying there is a positive real
�̄�, such that 𝜕2𝑈(𝑥𝑛𝑏, 𝑇𝑛𝑏; 𝑎𝑀)/𝜕 𝑎2𝑅 < 0 if and only if 𝜕𝑥𝐴/𝜕𝑎𝑅 < �̄�. ■

Claim 3 indicates that at (𝑎𝑅, 𝑏𝑅) = (𝑎𝑀 , 𝑏𝑀) and 𝛾 = 𝛾∗, the second-order condition for region
A’smedian resident is satisfied if and only if themanipulability of the breakdown level of the project
𝑥𝐴 through the choice of 𝑎𝑅 is sufficiently weak.

Proof of Proposition 2
Suppose that 𝑢(𝑥, 𝑎) = 𝑎𝑥, 𝑣(𝑥, 𝑏) = 𝑏𝑥, and 𝑐(𝑥) = 𝑥𝛼/𝛼 (𝛼 ≥ 2). Then, from (19) and (20), the
second-order derivatives of 𝑈(𝑥𝑛𝑏, 𝑇𝑛𝑏; 𝑎𝑀) and 𝑉(𝑥𝑛𝑏, 𝑇𝑛𝑏; 𝑎𝑀) are calculated as follows:

𝜕2𝑈(𝑥𝑛𝑏, 𝑇𝑛𝑏; 𝑎𝑀)
𝜕 𝑎2𝑅

= 𝜕2𝑥𝑛𝑏
𝜕𝑎2𝑅

(𝑎𝑀 − 𝑎𝑅) −
𝜕𝑥𝑛𝑏
𝜕𝑎𝑅

− ( 𝛽
𝑛𝐴

) 𝜕
2𝑥𝐴
𝜕𝑎2𝑅

(𝑛𝐴𝑎𝑅 + 𝑛𝐵𝑏𝑅 − 𝑐′(𝑥𝐴))

+ ( 𝛽
𝑛𝐴

) (𝜕𝑥
𝐴

𝜕𝑎𝑅
)
2

𝑐″(𝑥𝐴) − 𝛽𝜕𝑥
𝐴

𝜕𝑎𝑅
− (1 − 𝛽) (𝜕𝑥

𝑛𝑏

𝜕𝑎𝑅
− 𝜕𝑥𝐴
𝜕𝑎𝑅

) (22)

and 𝜕
2 𝑉(𝑥𝑛𝑏, 𝑇𝑛𝑏; 𝑏𝑀)

𝜕 𝑏2𝑅
= 𝜕2𝑥𝑛𝑏

𝜕𝑏2𝑅
(𝑏𝑀 − 𝑏𝑅) − (1 + 𝛽)𝜕𝑥

𝑛𝑏

𝜕𝑏𝑅
. (23)

Because 𝑥𝑛𝑏(𝑎𝑅, 𝑏𝑅) = (𝑛𝐴𝑎𝑅 + 𝑛𝐵𝑏𝑅)
1

𝛼−1 and 𝑥𝐴(𝑎𝑅, 𝛾) = (𝑛𝐴𝑎𝑅/𝛾)
1

𝛼−1 , we have

𝜕𝑥𝑛𝑏(𝑎𝑅, 𝑏𝑅)
𝜕𝑎𝑅

= 𝑛𝐴(𝑛𝐴𝑎𝑅 + 𝑛𝐵𝑏𝑅)
2−𝛼
𝛼−1

𝛼 − 1 , 𝜕𝑥
𝑛𝑏(𝑎𝑅, 𝑏𝑅)
𝜕𝑏𝑅

= 𝑛𝐵(𝑛𝐴𝑎𝑅 + 𝑛𝐵𝑏𝑅)
2−𝛼
𝛼−1

𝛼 − 1 ,

𝜕2𝑥𝑛𝑏(𝑎𝑅, 𝑏𝑅)
𝜕𝑎2𝑅

= 𝑛2𝐴 (2 − 𝛼) (𝑛𝐴𝑎𝑅 + 𝑛𝐵𝑏𝑅)
3−2𝛼
𝛼−1

(𝛼 − 1)2 , 𝜕
2𝑥𝑛𝑏(𝑎𝑅, 𝑏𝑅)

𝜕𝑏2𝑅
= 𝑛2𝐵 (2 − 𝛼) (𝑛𝐴𝑎𝑅 + 𝑛𝐵𝑏𝑅)

3−2𝛼
𝛼−1

(𝛼 − 1)2 ,

𝜕𝑥𝐴(𝑎𝑅, 𝛾)
𝜕𝑎𝑅

= (𝑛𝐴𝛾 )
1

𝛼−1
((𝑎𝑅)

2−𝛼
𝛼−1

𝛼 − 1 ) , and 𝜕
2𝑥𝐴(𝑎𝑅, 𝛾)
𝜕𝑎2𝑅

= (𝑛𝐴𝛾 )
1

𝛼−1
((2 − 𝛼)(𝑎𝑅)

3−2𝛼
𝛼−1

(𝛼 − 1)2 ) . (24)

Substituting the values of (24) into (23) yields

𝜕2 𝑉(𝑥𝑛𝑏, 𝑇𝑛𝑏; 𝑏𝑀)
𝜕 𝑏2𝑅

= 𝑛𝐵(𝑛𝐴𝑎𝑅 + 𝑛𝐵𝑏𝑅)
3−2𝛼
𝛼−1 (𝑛𝐵𝑏𝑀(2 − 𝛼) − 𝑛𝐴𝑎𝑅(𝛼 − 1)(𝛽 + 1) + 𝑛𝐵𝑏𝑅((1 − 𝛼)𝛽 − 1))

(𝛼 − 1)2 ,

which is negative, by 𝛼 ≥ 2 and 0 ≤ 𝛽 ≤ 1.
Finally, we show that if 𝜕𝑥𝐴(𝑎𝑅, 𝛾)/𝜕𝑎𝑅 is sufficiently small, then 𝜕2𝑈(𝑥𝑛𝑏, 𝑇𝑛𝑏; 𝑎𝑀)/𝜕 𝑎2𝑅 < 0.

As a first step, we consider an “imaginary” situation in which 𝜕𝑥𝐴(𝑎𝑅, 𝛾)/𝜕𝑎𝑅 = 0 holds.

Claim 4 If 𝜕𝑥𝐴(𝑎𝑅, 𝛾)/𝜕𝑎𝑅 = 0, then 𝜕2𝑈(𝑥𝑛𝑏, 𝑇𝑛𝑏; 𝑎𝑀)/𝜕 𝑎2𝑅 < 0.
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Proof of Claim 4. First, because 𝜕𝑥𝐴(𝑎𝑅, 𝛾)/𝜕𝑎𝑅 = 0, from (22), we obtain that

𝜕2𝑈(𝑥𝑛𝑏, 𝑇𝑛𝑏; 𝑎𝑀)
𝜕 𝑎2𝑅

= 𝜕2𝑥𝑛𝑏
𝜕𝑎2𝑅

(𝑎𝑀 − 𝑎𝑅) − (2 − 𝛽)𝜕𝑥
𝑛𝑏

𝜕𝑎𝑅
.

Then, substituting the values of (24) into the previous formula yields

𝜕2𝑈(𝑥𝑛𝑏, 𝑇𝑛𝑏; 𝑎𝑀)
𝜕 𝑎2𝑅

= 𝑛𝐴(𝑛𝐴𝑎𝑅 + 𝑛𝐵𝑏𝑅)
3−2𝛼
𝛼−1 (𝑛𝐴𝑎𝑀(2 − 𝛼) + 𝑛𝐴𝑎𝑅(𝛼(𝛽 − 1) − 𝛽) + 𝑛𝐵𝑏𝑅(𝛼 − 1)(𝛽 − 2))

(𝛼 − 1)2 ,

which is negative, by 𝛼 ≥ 2 and 0 ≤ 𝛽 ≤ 1. ■
Here, 𝜕2𝑈(𝑥𝑛𝑏, 𝑇𝑛𝑏; 𝑎𝑀)/𝜕 𝑎2𝑅 in (22) can be viewed as a quadratic function of 𝜕𝑥𝐴/𝜕𝑎𝑅. Note

that the coefficient of (𝜕𝑥𝐴/𝜕𝑎𝑅)
2 is positive, because (𝛽𝑐″(𝑥𝐴)/𝑛𝐴) > 0. In addition, by Claim 4,

𝜕2𝑈(𝑥𝑛𝑏, 𝑇𝑛𝑏; 𝑎𝑀)/𝜕 𝑎2𝑅 < 0 if the value of 𝜕𝑥𝐴/𝜕𝑎𝑅 is zero. Thus, for each (𝑎𝑅, 𝑏𝑅) ∈ 𝒜×ℬ, there
exists a positive threshold value �̄�(𝑎𝑅, 𝑏𝑅), such that 𝜕2𝑈(𝑥𝑛𝑏, 𝑇𝑛𝑏; 𝑎𝑀)/𝜕 𝑎2𝑅 < 0 if and only if

𝜕𝑥𝐴(𝑎𝑅, 𝛾)
𝜕𝑎𝑅

< �̄�(𝑎𝑅, 𝑏𝑅).

The value �̄�(𝑎𝑅, 𝑏𝑅) is continuous in (𝑎𝑅, 𝑏𝑅) because 𝜕2𝑈(𝑥𝑛𝑏, 𝑇𝑛𝑏; 𝑎𝑀)/𝜕 𝑎2𝑅 is continuous
with respect to (𝑎𝑅, 𝑏𝑅). Furthermore, 𝒜 × ℬ = [𝑎, ̄𝑎] × [𝑏, ̄𝑏] is a compact set. From these
facts, and applying the Weierstrass extreme value theorem, we obtain the result that �̄�(𝑎𝑅, 𝑏𝑅) has
a minimum value at some point in 𝒜 × ℬ. Therefore, we find that for each (𝑎𝑅, 𝑏𝑅) ∈ 𝒜 × ℬ,
𝜕2𝑈(𝑥𝑛𝑏, 𝑇𝑛𝑏; 𝑎𝑀)/𝜕 𝑎2𝑅 < 0 if 𝜕𝑥𝐴/𝜕𝑎𝑅 < min(𝑎𝑅,𝑏𝑅)∈𝒜×ℬ �̄�(𝑎𝑅, 𝑏𝑅). Therefore, 𝑈(𝑥𝑛𝑏, 𝑇𝑛𝑏; 𝑎𝑀)
is concave in 𝑎𝑅 when 𝜕𝑥𝐴/𝜕𝑎𝑅 is sufficiently small.

Proof of Proposition 3
We analyze the game by backward induction.

First, we analyze Stage 3. Suppose ̃𝑎𝑅 ∈ 𝒜 is elected as the setter of the disagreement level of the
project. Then, she chooses 𝑥𝐴 = 𝑥𝐴( ̃𝑎𝑅, 𝛾), such that 𝑢𝑥(𝑥𝐴( ̃𝑎𝑅, 𝛾), ̃𝑎𝑅) = 𝛾𝑐′(𝑥𝐴( ̃𝑎𝑅, 𝛾))/𝑛𝐴. Given
this level of the project, each resident𝑎 ∈ 𝒜 obtains a payoffof𝑈(𝑥𝐴( ̃𝑎𝑅, 𝛾), 0; 𝑎) = 𝑢(𝑥𝐴( ̃𝑎𝑅, 𝛾), 𝑎)−
𝛾𝑐(𝑥𝐴( ̃𝑎𝑅, 𝛾))/𝑛𝐴 + 𝐼𝐴/𝑛𝐴. The optimal representative for 𝑎 ∈ 𝒜 in the election in Stage 3 is deter-
mined by the first-order condition,

𝜕𝑥𝐴
𝜕 ̃𝑎𝑅

(𝑢𝑥(𝑥𝐴( ̃𝑎𝑅, 𝛾), 𝑎) −
𝛾
𝑛𝐴

𝑐′(𝑥𝐴( ̃𝑎𝑅, 𝛾))) = 0.

The solution is given by ̃𝑎𝑅 = 𝑎; that is, the optimal representative for each region A’s resident
is herself.28 We can easily check that the preference represented by 𝑈(𝑥𝐴( ̃𝑎𝑅, 𝛾), 𝑎) satisfies the
single-crossing condition of Gans and Smart (1996). Hence, in this election stage, the decisive voter
𝑎𝑀 chooses herself as the regional representative, and the project level achieved through the new
election is 𝑥𝐴(𝑎𝑀 , 𝛾). Note that the breakdown level of the project is fixed at ̄𝑥𝐴 ≡ 𝑥𝐴(𝑎𝑀 , 𝛾) if the
negotiation fails. Therefore, the choice of the negotiation representative in Stage 1 does not affect
the disagreement level of the project; that is, 𝜕 ̄𝑥𝐴/𝜕𝑎𝑅 = 0.

28The second derivative of𝑈(𝑥𝐴(�̃�𝑅, 𝛾), 0; 𝑎) with respect to �̃�𝑅 is

𝜕2𝑈(𝑥𝐴(�̃�𝑅, 𝛾), 0; 𝑎)
𝜕�̃�2𝑅

= 𝜕2𝑥𝐴

𝜕�̃�2𝑅
(𝑢𝑥(𝑥𝐴(�̃�𝑅, 𝛾), 𝑎) −

𝛾
𝑛𝐴

𝑐′(𝑥𝐴(�̃�𝑅, 𝛾)))

+ (𝜕𝑥
𝐴

𝜕�̃�𝑅
)
2

(𝑢𝑥𝑥(𝑥𝐴(�̃�𝑅, 𝛾), 𝑎) −
𝛾
𝑛𝐴

𝑐″(𝑥𝐴(�̃�𝑅, 𝛾))) .

Thefirst term is equal to zero at �̃�𝑅 = 𝑎, from thefirst-order condition. The second term is negative, from the conditions of
𝑢𝑥𝑥 and 𝑐″. Hence, 𝜕2𝑈(𝑥𝐴(�̃�𝑅, 𝛾), 0; 𝑎)/𝜕�̃�2𝑅||�̃�𝑅=𝑎 < 0. Similarly to Proposition 2, we can prove that𝑈(𝑥𝐴(�̃�𝑅, 𝛾), 𝑎)
is concave in �̃�𝑅 if 𝑢(𝑥, 𝑎) = 𝑎𝑥 and 𝑐(𝑥) = 𝑥𝛼/𝛼, such that 𝛼 ≥ 2.
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Finally, we analyze Stages 1 and 2. We can apply some parts of the proofs of Theorem 1 and
Proposition 2. If we substitute zero in each 𝜕𝑥𝐴/𝜕𝑎𝑅 in the proof of Claim 1, then we obtain that
(𝑎∗𝑅, 𝑏∗𝑅) = (𝑎𝑀 , 𝑏𝑀) is a solution of (8) if and only if 𝛾 = 𝛾∗. Substituting zero in 𝜕𝑥𝐴/𝜕𝑎𝑅 of
(21), we can prove that the second-order condition for region A’s median resident holds. By directly
applying Claim 2, we find that the second-order condition for region B’smedian resident is satisfied.
In a similarway to the proof of Proposition 2, the payoff functions of themedian residents are proven
to be concave in their representatives when 𝑢(𝑥, 𝑎) = 𝑎𝑥, 𝑣(𝑥, 𝑏) = 𝑏𝑥, and 𝑐(𝑥) = 𝑥𝛼/𝛼, such that
𝛼 ≥ 2. ■

Proof of Proposition 4
From 𝑈(𝑥𝑛𝑏, 𝑇𝑛𝑏; 𝑛𝑚) = 𝑉(𝑥𝑛𝑏, 𝑇𝑛𝑏; 𝑛𝑚), we have

𝐼𝐴
𝑛𝐴

− 𝛾𝑐(𝑥𝑛𝑏)
𝑛𝐴

+ 𝑛𝐵𝑇𝑛𝑏
𝑛𝐴

+ 𝑡𝑛𝑚 = 𝐼𝐵
𝑛𝐵

− (1 − 𝛾)𝑐(𝑥𝑛𝑏)
𝑛𝐵

− 𝑇𝑛𝑏 + 𝑡(𝑁 − 𝑛𝑚).

If 𝑛 > 𝑛𝑚, then we have

𝐼𝐴
𝑛𝐴

− 𝛾𝑐(𝑥𝑛𝑏)
𝑛𝐴

+ 𝑛𝐵𝑇𝑛𝑏
𝑛𝐴

+ 𝑡𝑛 > 𝐼𝐴
𝑛𝐴

− 𝛾𝑐(𝑥𝑛𝑏)
𝑛𝐴

+ 𝑛𝐵𝑇𝑛𝑏
𝑛𝐴

+ 𝑡𝑛𝑚

= 𝐼𝐵
𝑛𝐵

− (1 − 𝛾)𝑐(𝑥𝑛𝑏)
𝑛𝐵

− 𝑇𝑛𝑏 + 𝑡(𝑁 − 𝑛𝑚)

> 𝐼𝐵
𝑛𝐵

− (1 − 𝛾)𝑐(𝑥𝑛𝑏)
𝑛𝐵

− 𝑇𝑛𝑏 + 𝑡(𝑁 − 𝑛).

Adding𝑛𝜇(𝑥𝑛𝑏) to the left-hand and right-hand sides of the above conditions yields𝑈(𝑥𝑛𝑏, 𝑇𝑛𝑏; 𝑛) >
𝑉(𝑥𝑛𝑏, 𝑇𝑛𝑏; 𝑛). We can show the case of 𝑛 < 𝑛𝑚 in a similar manner. ■
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Online Appendix

A On the second-order condition for region A’s median resident
We consider the case of 𝑢(𝑥, 𝑎) = 𝑎𝑥, 𝑣(𝑥, 𝑏) = 𝑏𝑥, and 𝑐(𝑥) = 𝑥3/3. We derive the second-order
conditions for region A’s median resident for𝒜 andℬ in Table 1.1) Note that 𝑛𝐵 = 1, 𝑏𝑀 = 1/2, and
𝛽 = 1/2. The rightmost column shows the second-order condition for region A’s median resident
for each case.

𝑛𝐴 𝑎𝑀 SOC for 𝑎𝑀
Case (1) 1 1.5 0.458024 < 𝛾 ≤ 1
Case (2) 1.5 1.75 0.420769 < 𝛾 ≤ 1
Case (3) 2 2 0.404444 < 𝛾 ≤ 1
Case (4) 2.5 2.25 0.395618 < 𝛾 ≤ 1
Case (5) 3 2.5 0.390245 < 𝛾 ≤ 1
Case (6) 3.5 2.75 0.38671 < 𝛾 ≤ 1
Case (7) 4 3 0.384251 < 𝛾 ≤ 1

Table 3: The second-order condition for region A’s median resident when 𝑐(𝑥) = 𝑥3/3.

Note that as region A’s population increases, the interval of the condition expands. Hence, the
relative position of𝒜 andℬmay have an effect on the second-order condition for region A’s median
resident. This is in contrast to the case of Example 1.

B The case in which region A’s second-order condition is violated
Proof of Result 1. Claim A1 shows the best response function of region A’s median resident.

Claim A1 (i) If 0 ≤ 𝛾 ≤ 𝑎𝑀/(1 + 𝑎𝑀), then 𝑎∗𝑅(𝑏𝑅) = ̄𝑎, for all 𝑏𝑅 ∈ ℬ. (ii) If 1/√3 > 𝛾 >
𝑎𝑀/(1 + 𝑎𝑀), then

𝑎∗𝑅(𝑏𝑅) = {
̄𝑎 if 0 ≤ 𝑏𝑅 ≤

𝑎𝑀(1−𝛾)
𝛾

𝑎 if 1 ≥ 𝑏𝑅 ≥
𝑎𝑀(1−𝛾)

𝛾

.

Proof of Claim A1. As we can see from (11), the payoff function of the median resident of region A
𝑈(𝑥𝑛𝑏, 𝑇𝑛𝑏; 𝑎𝑀) is a quadratic convex function with regard to 𝑎𝑅, and is minimized at

𝑎𝑅 = 𝑎𝑅 ≡
2𝛾2

3𝛾2 − 1𝑎𝑀 − 𝛾(1 + 𝛾)
3𝛾2 − 1 𝑏𝑅.

Thus, the best response of region A’s median resident must be a corner solution, and is either 𝑎 or
̄𝑎. Because 𝑈(𝑥𝑛𝑏, 𝑇𝑛𝑏; 𝑎𝑀) is symmetric with respect to 𝑎𝑅 and 𝑎𝑀 is the center of 𝒜, the best
response of region A’s median resident to 𝑏𝑅, denoted by 𝑎∗𝑅(𝑏𝑅), is (i) 𝑎∗𝑅(𝑏𝑅) = ̄𝑎 if 𝑎𝑅 ≤ 𝑎𝑀 , and
(ii) 𝑎∗𝑅(𝑏𝑅) = 𝑎 if 𝑎𝑅 ≥ 𝑎𝑀 . After some calculation, we have that 𝑎𝑅 ≤ 𝑎𝑀 if and only if

(1 + 𝛾)(𝑎𝑀(−1 + 𝛾) + 𝑏𝑅𝛾)
3𝛾2 − 1 ≥ 0. (25)

Because 0 ≤ 𝛾 < 1/√3, we have 3𝛾2−1 < 0. Hence, condition (25) is equivalent to 𝑏𝑅 ≤ 𝑎𝑀(1−𝛾)/𝛾.
In addition, because ℬ = [0, 1], 𝑎𝑀(1 − 𝛾)/𝛾 belongs to ℬ if and only if 𝑎𝑀(1 − 𝛾)/𝛾 ≤ 1 or 𝛾 ≥
𝑎𝑀/(1 + 𝑎𝑀). Summing up these observations, we reach Claim A1. ■

1)The calculations are performed using Mathematica; the code is available upon request.
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The best response function of region B’s median resident is the same as that in (12):

𝑏∗𝑅(𝑎𝑅) = min {1, 13 +
𝑎𝑅 (1 − 𝛾)

3𝛾 } .

Considering two cases, we examine the Nash equilibrium.

Case (i) 0 ≤ 𝛾 ≤ 𝑎𝑀
1 + 𝑎𝑀

By Claim A1, resident 𝑎𝑀 always selects ̄𝑎 as the region A’s representative. Substituting it into
the best response function of region B’s median resident, we have

𝑏∗𝑅( ̄𝑎) = min {1, 13 +
1 − 𝛾
3𝛾 ̄𝑎} = min {1, 1 − 𝛾

3𝛾 𝑎𝑀 + 1 + 𝛾
6𝛾 } ,

because ̄𝑎 = 𝑎𝑀 + 1/2.

Case (ii) 1
√3

≥ 𝛾 ≥ 𝑎𝑀
1 + 𝑎𝑀

Figure 1 summarizes the geometric relation between the best response functions of the median
residents of regions A and B. The blue line represents the best response of region A’s median resi-
dent, and the red line represents the best response of region B’s median resident. In the figure, note
that (ii-1) the slope of 𝑏∗𝑅 is positive, 𝑎∗𝑅 is discontinuous, and

(ii-2) 𝑏∗𝑅(𝑎) =
𝑎𝑀(1 − 𝛾)

3𝛾 + −1 + 3𝛾
6𝛾 < 𝑎𝑀(1 − 𝛾)

𝛾 if 1
√3

≥ 𝛾 ≥ 𝑎𝑀
1 + 𝑎𝑀

and 𝑎𝑀 ≥ 1
2.

By (ii-1) and (ii-2), there is no Nash equilibrium in this case.

Figure 1: The case inwhich the second-order condition for regionA’smedian resident does not hold

C Budget balance condition
In the main analysis, we have assumed that each region has enough income to meet any tax pay-
ment. Here, we relax this assumption. We still assume that 𝑥𝐸 in (1) is feasible in the economy:
𝑐(𝑥𝐸) < 𝐼𝐴 + 𝐼𝐵 . We discuss the importance of (i) the controllability of the breakdown level of
the project, and (ii) the unbiased bargaining powers of the regions for the project to be completed
efficiently.
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When the negotiation breaks down, region A’s representative 𝑎𝑅 ∈ 𝒜 chooses 𝑥𝐴 to maximize
his payoff 𝑢(𝑥𝐴, 𝑎𝑅) + (𝐼𝐴/𝑛𝐴) − (𝛾/𝑛𝐴)𝑐(𝑥𝐴), subject to the budget conditions

𝛾
𝑛𝐴

𝑐(𝑥𝐴) ≤ 𝐼𝐴
𝑛𝐴

and 1 − 𝛾
𝑛𝐵

𝑐(𝑥𝐴) ≤ 𝐼𝐵
𝑛𝐵

.

The former (latter) is the budget condition for region A (region B, respectively). The cost of 𝑥𝐴 is
shared through the cost-matching grant of the central government. Thus, region B’s budget condi-
tion constrains the decision of region A’s representative. Here, 𝑥𝐴 satisfies

𝑢𝑥(𝑥𝐴, 𝑎𝑅) =
𝛾
𝑛𝐴

𝑐′(𝑥𝐴) if 𝑐(𝑥𝐴) ≤ min {𝐼𝐴𝛾 ,
𝐼𝐵

1 − 𝛾} and (26)

𝑐(𝑥𝐴) = min {𝐼𝐴𝛾 ,
𝐼𝐵

1 − 𝛾} otherwise. (27)

Hereafter, without loss of generality, we assume that 𝐼𝐴/𝛾 = min {𝐼𝐴/𝛾, 𝐼𝐵/(1 − 𝛾)}.
By (26), as long as 𝑐(𝑥𝐴) ≤ 𝐼𝐴/𝛾, 𝑥𝐴 is increasing with respect to 𝑎𝑅. Hence, for all 𝛾 ∈ [0, 1],

we can find the threshold ̃𝑎𝑅(𝛾) ∈ 𝒜, such that

• for all 𝑎𝑅 ∈ [𝑎, ̃𝑎𝑅(𝛾)], 𝑢𝑥(𝑥𝐴, 𝑎𝑅) =
𝛾
𝑛𝐴

𝑐′(𝑥𝐴), and

• for all 𝑎𝑅 ∈ ( ̃𝑎𝑅(𝛾), ̄𝑎], 𝑐(𝑥𝐴) = 𝐼𝐴
𝛾 .

Clearly, ̃𝑎𝑅(𝛾) is increasing with respect to region A’s income 𝐼𝐴. Furthermore, 𝑥𝐴 is constant in
𝑎𝑅 on the interval ( ̃𝑎𝑅(𝛾), ̄𝑎]. That is, region A cannot control the breakdown level of the project on
this interval.

As in Section 3,

�̄�𝐴 ≡ 𝑢(𝑥𝐴, 𝑎𝑅) +max {0, 𝐼𝐴𝑛𝐴
− 𝛾
𝑛𝐴

𝑐(𝑥𝐴)} and ̄𝑣𝐵 ≡ 𝑣(𝑥𝐴, 𝑏𝑅) +max {0, 𝐼𝐵𝑛𝐵
− 1 − 𝛾

𝑛𝐵
𝑐(𝑥𝐴)} (28)

are the breakdown payoffs to the representatives. The Nash bargaining problem is formulated as

max
𝑥𝑛𝑏,𝑋𝑛𝑏

𝐴 ,𝑋𝑛𝑏
𝐵

𝛽 ln [𝑢(𝑥𝑛𝑏, 𝑎𝑅) + 𝑋𝑛𝑏
𝐴 − �̄�𝐴] + (1 − 𝛽) ln [𝑣(𝑥𝑛𝑏, 𝑏𝑅) + 𝑋𝑛𝑏

𝐵 − ̄𝑣𝐵]

subject to 𝐼𝐴 + 𝐼𝐵 = 𝑛𝐴𝑋𝑛𝑏
𝐴 + 𝑛𝐵𝑋𝑛𝑏

𝐵 + 𝑐(𝑥𝑛𝑏), 𝑋𝑛𝑏
𝐴 ≥ 0, and 𝑋𝑛𝑏

𝐵 ≥ 0,

where𝑋𝑛𝑏
𝑖 (𝑖 = 𝐴, 𝐵) represents the per-capita consumption of private goods of region 𝑖, and the first

constraint represents the resource constraint in the economy. As in Section 3, the Nash bargaining
outcome depends on the types of the representatives. Then, we denote 𝑥𝑛𝑏 = 𝑥𝑛𝑏(𝑎𝑅, 𝑏𝑅) and
𝑋𝑛𝑏
𝑖 = 𝑋𝑛𝑏

𝑖 (𝑎𝑅, 𝑏𝑅) (𝑖 = 𝐴, 𝐵).

Result 2 The Nash bargaining outcome is summarized as follows:
Case 1. If 𝑋𝑛𝑏

𝑖 (𝑎𝑅, 𝑏𝑅) > 0 for all 𝑖 ∈ {𝐴, 𝐵}, then

𝑋𝑛𝑏
𝐴 = 𝛽

𝑛𝐴
(𝑛𝐴𝑢(𝑥𝑛𝑏, 𝑎𝑅) + 𝑛𝐵𝑣(𝑥𝑛𝑏, 𝑏𝑅) + 𝐼𝐴 + 𝐼𝐵 − 𝑐(𝑥𝑛𝑏) − 𝑛𝐴�̄�𝐴 − 𝑛𝐵 ̄𝑣𝐵) − (𝑢(𝑥𝑛𝑏, 𝑎𝑅) − �̄�𝐴)

𝑋𝑛𝑏
𝐵 = 1 − 𝛽

𝑛𝐵
(𝑛𝐴𝑢(𝑥𝑛𝑏, 𝑎𝑅) + 𝑛𝐵𝑣(𝑥𝑛𝑏, 𝑏𝑅) + 𝐼𝐴 + 𝐼𝐵 − 𝑐(𝑥𝑛𝑏) − 𝑛𝐴�̄�𝐴 − 𝑛𝐵 ̄𝑣𝐵)−(𝑣(𝑥𝑛𝑏, 𝑎𝑅) − ̄𝑣𝐵) ,

where 𝑥𝑛𝑏 = 𝑥𝑛𝑏(𝑎𝑅, 𝑏𝑅) and 𝑥𝐴 = 𝑥𝐴(𝑎𝑅, 𝛾) and �̄�𝐴 and ̄𝑣𝐵 are determined as in (28).
Case 2. If 𝑋𝑛𝑏

𝑖 (𝑎𝑅, 𝑏𝑅) = 0 and 𝑋𝑛𝑏
𝑗 (𝑎𝑅, 𝑏𝑅) > 0 (𝑖 ≠ 𝑗), then

𝑋𝑛𝑏
𝑗 (𝑎𝑅, 𝑏𝑅) =

𝐼𝐴 + 𝐼𝐵 − 𝑐(𝑥𝑛𝑏)
𝑛𝑗
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where 𝑥𝑛𝑏 = 𝑥𝑛𝑏(𝑎𝑅, 𝑏𝑅).
In both cases, 𝑥𝑛𝑏 satisfies 𝑛𝐴𝑢𝑥(𝑥𝑛𝑏, 𝑎𝑅) + 𝑛𝐵𝑣𝑥(𝑥𝑛𝑏, 𝑏𝑅) = 𝑐′(𝑥𝑛𝑏).2)

The value of 𝛽 determines which of Cases 1 and 2 arises. In Case 1, the right-hand side of
𝑋𝑛𝑏
𝑖 (𝑎𝑅, 𝑏𝑅) is not necessarily positive. If𝛽 is sufficiently small, then the right-hand side of𝑋𝑛𝑏

𝐴 (𝑎𝑅, 𝑏𝑅)
may be negative.3) If 𝛽 is sufficiently large, then the right-hand side of𝑋𝑛𝑏

𝐵 (𝑎𝑅, 𝑏𝑅)may be negative.
Hence,𝑋𝑛𝑏

𝐴 (𝑎𝑅, 𝑏𝑅) and𝑋𝑛𝑏
𝐵 (𝑎𝑅, 𝑏𝑅) are both positive if and only if 𝛽 is intermediate (the bargaining

powers of two regions are not biased). Case 2 is observed if 𝛽 is sufficiently large or small.
The payoffs to themedian residents are𝑈(𝑥𝑛𝑏(𝑎𝑅, 𝑏𝑅), 𝑋𝑛𝑏

𝐴 (𝑎𝑅, 𝑏𝑅); 𝑎𝑀) = 𝑢(𝑥𝑛𝑏(𝑎𝑅, 𝑏𝑅), 𝑎𝑀)+
𝑋𝑛𝑏
𝐴 (𝑎𝑅, 𝑏𝑅) and 𝑉(𝑥𝑛𝑏(𝑎𝑅, 𝑏𝑅), 𝑋𝑛𝑏

𝐵 (𝑎𝑅, 𝑏𝑅); 𝑏𝑀) = 𝑣(𝑥𝑛𝑏(𝑎𝑅, 𝑏𝑅), 𝑏𝑀) + 𝑋𝑛𝑏
𝐵 (𝑎𝑅, 𝑏𝑅).

In the following, to investigate the extensibility of our main result, we examine whether the
project is undertaken efficiently through the self-representation.

Case 1 𝑋𝑛𝑏
𝐴 (𝑎𝑀 , 𝑏𝑀), 𝑋𝑛𝑏

𝐵 (𝑎𝑀 , 𝑏𝑀) > 0
Suppose that the central government sets 𝛾 = 𝛾∗, as in Theorem 1.
Case 1.1: If𝑎𝑀 ≤ ̃𝑎𝑅(𝛾∗)holds, the payoffs to themedian residents are the same as𝑈(𝑥𝑛𝑏, 𝑇𝑛𝑏; 𝑎𝑀)

and 𝑉(𝑥𝑛𝑏, 𝑇𝑛𝑏; 𝑏𝑀) in (6) and (7), respectively, in the main text. Thus, we have a similar result to
that in Theorem 1.

Case 1.2: If 𝑎𝑀 > ̃𝑎𝑅(𝛾∗) holds, then the project cannot be undertaken efficiently under the
grant with 𝛾∗. Result 3 is crucial to showing this.

Result 3 Suppose that 𝑎𝑀 ∈ ( ̃𝑎𝑅(𝛾∗), ̄𝑎]. Then, (𝑎𝑅, 𝑏𝑅) = (𝑎𝑀 , 𝑏𝑀) satisfies the first-order condition
(8) if and only if 𝑥𝐴(𝑎𝑀 , 𝛾∗) = 𝑥𝑛𝑏(𝑎𝑀 , 𝑏𝑀).4)

By Result 3, if the project level when the negotiation breaks down is the same as the efficient
level 𝑥𝑛𝑏(𝑎𝑀 , 𝑏𝑀), then the self-representation can be an equilibrium. However, this is impossible
because 𝑐(𝑥𝐴) = 𝐼𝐴/𝛾∗ does not imply 𝑥𝐴 = 𝑥𝑛𝑏(𝑎𝑀 , 𝑏𝑀) (see (27)). Thus, the cost-matching grant
with 𝛾∗ does not achieve the efficient project.

Even if the cost-matching grant with 𝛾∗ is not effective, another cost-matching rate may achieve
efficiency. Now, we consider the rate ̃𝛾 = 𝐼𝐴/𝑐(𝑥𝑛𝑏(𝑎𝑀 , 𝑏𝑀)). Note that 𝑐(𝑥𝐴) = 𝐼𝐴/ ̃𝛾 implies
𝑥𝐴 = 𝑥𝑛𝑏(𝑎𝑀 , 𝑏𝑀). Similarly to Result 3, we can show that if 𝑎𝑀 belongs to ( ̃𝑎( ̃𝛾), ̄𝑎], then the
self-representation is an equilibrium such that the project is undertaken efficiently. Trivially, ̃𝛾 does
not work well to achieve efficiency without condition 𝑎𝑀 ∈ ( ̃𝑎( ̃𝛾), ̄𝑎].

In conclusion, in Case 1.2, region A’s income is insufficient, in that it cannot undertake the
project so as to maximize the region A representative’s surplus 𝑢(𝑥𝐴, 𝑎𝑀) − (𝛾∗/𝑛𝐴)𝑐(𝑥𝐴). In this
case, region A loses control of the breakdown level of the project around (𝑎𝑅, 𝛾) = (𝑎𝑀 , 𝛾∗). Thus,
controlling the breakdown project level is crucial to the efficiency of the project. When region A’s
income is small, it would be useful to redistribute income to region A to restore the controllability.

Case 2 𝑋𝑛𝑏
𝑖 (𝑎𝑀 , 𝑏𝑀) = 0 and 𝑋𝑛𝑏

𝑗 (𝑎𝑀 , 𝑏𝑀) > 0
We consider the case of 𝑋𝑛𝑏

𝐴 (𝑎𝑀 , 𝑏𝑀) = 0 and 𝑋𝑛𝑏
𝐵 (𝑎𝑀 , 𝑏𝑀) > 0. We examine the case in which

the right-hand side of 𝑋𝑛𝑏
𝐴 (𝑎𝑅, 𝑏𝑅) of Case 1 in Result 2 is negative at (𝑎𝑅, 𝑏𝑅) = (𝑎𝑀 , 𝑏𝑀):

0 > 𝛽
𝑛𝐴

(𝑛𝐴𝑢(𝑥𝑛𝑏, 𝑎𝑅) + 𝑛𝐵𝑣(𝑥𝑛𝑏, 𝑏𝑅) + 𝐼𝐴 + 𝐼𝐵 − 𝑐(𝑥𝑛𝑏) − 𝑛𝐴�̄�𝐴 − 𝑛𝐵 ̄𝑣𝐵) − (𝑢(𝑥𝑛𝑏, 𝑎𝑅) − �̄�𝐴)
(29)

if (𝑎𝑅, 𝑏𝑅) = (𝑎𝑀 , 𝑏𝑀). The right-hand side of (29) is continuous in (𝑎𝑅, 𝑏𝑅). Thus, we can find an
open neighborhood of (𝑎𝑀 , 𝑏𝑀), denoted by 𝒩(𝑎𝑀 , 𝑏𝑀), such that for all (𝑎𝑅, 𝑏𝑅) ∈ 𝒩(𝑎𝑀 , 𝑏𝑀),

2)The proof is at the end of this section.
3)Note that 𝑢(𝑥𝑛𝑏, 𝑎𝑅) − �̄�𝐴 and 𝑣(𝑥𝑛𝑏, 𝑎𝑅) − ̄𝑣𝐵 are independent of 𝛽.
4)The proof is at the end of this section.
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(29) is satisfied. By Case 2 of Result 2, the median residents’ payoffs are

𝑈(𝑥𝑛𝑏(𝑎𝑅, 𝑏𝑅), 𝑋𝑛𝑏
𝐴 (𝑎𝑅, 𝑏𝑅); 𝑎𝑀) = 𝑢(𝑥𝑛𝑏(𝑎𝑅, 𝑏𝑅), 𝑎𝑀)

and 𝑉(𝑥𝑛𝑏(𝑎𝑅, 𝑏𝑅), 𝑋𝑛𝑏
𝐵 (𝑎𝑅, 𝑏𝑅); 𝑏𝑀) = 𝑣(𝑥𝑛𝑏(𝑎𝑅, 𝑏𝑅), 𝑏𝑀) +

𝐼𝐴 + 𝐼𝐵 − 𝑐(𝑥𝑛𝑏(𝑎𝑅, 𝑏𝑅))
𝑛𝐵

in the neighborhood𝒩(𝑎𝑀 , 𝑏𝑀). Because 𝑥𝑛𝑏(𝑎𝑅, 𝑏𝑅) is increasing in 𝑎𝑅 and the payoff to region
A’s median resident is increasing in 𝑥𝑛𝑏, region A’s median resident does not choose himself as
the representative. In addition, the payoffs above do not depend on 𝛾. Thus, it is impossible to
control the median residents’ behavior through the choice of 𝛾. We obtain a similar result when
𝑋𝑛𝑏
𝐴 (𝑎𝑀 , 𝑏𝑀) > 0 and 𝑋𝑛𝑏

𝐵 (𝑎𝑀 , 𝑏𝑀) = 0.
In conclusion, when the bargaining powers of the regions are biased, the private good consump-

tion of one of the regions may be zero. In this case, the project cannot be undertaken efficiently
through self-representation. Therefore, when the budget conditions are introduced, an argument
similar to that in Section 3 can be applied under nonbiased bargaining powers.

Proof of Result 2
The Lagrange function of the Nash bargaining problem is

ℒ = 𝛽 ln [𝑢(𝑥, 𝑎𝑅) + 𝑋𝐴 − �̄�𝐴] + (1 − 𝛽) ln [𝑣(𝑥, 𝑏𝑅) + 𝑋𝐵 − ̄𝑣𝐵]
+ 𝜆 (𝐼𝐴 + 𝐼𝐵 − 𝑛𝐴𝑋𝐴 − 𝑛𝐵𝑋𝐵 − 𝑐(𝑥)) + 𝜃𝐴𝑋𝐴 + 𝜃𝐵𝑋𝐵 ,

where 𝜆, 𝜃𝐴, 𝜃𝐵 ≥ 0. Differentiating ℒ with respect to 𝑥, 𝑋𝐴, 𝑋𝐵 , and 𝜆 yields

𝛽𝑢𝑥(𝑥, 𝑎𝑅)
𝑢(𝑥, 𝑎𝑅) + 𝑋𝐴 − �̄�𝐴 + (1 − 𝛽)𝑣𝑥(𝑥, 𝑏𝑅)

𝑣(𝑥, 𝑏𝑅) + 𝑋𝐵 − ̄𝑣𝐵 − 𝜆𝑐′(𝑥) = 0, (30)

𝛽
𝑢(𝑥, 𝑎𝑅) + 𝑋𝐴 − �̄�𝐴 − 𝜆𝑛𝐴 + 𝜃𝐴 = 0, (31)

1 − 𝛽
𝑣(𝑥, 𝑏𝑅) + 𝑋𝐵 − ̄𝑣𝐵 − 𝜆𝑛𝐵 + 𝜃𝐵 = 0, (32)

𝐼𝐴 + 𝐼𝐵 = 𝑛𝐴𝑋𝐴 + 𝑛𝐵𝑋𝐵 + 𝑐(𝑥), (33)

and, furthermore,
𝜃𝐴𝑋𝐴 = 0, 𝜃𝐵𝑋𝐵 = 0, 𝑋𝐴 ≥ 0, and 𝑋𝐵 ≥ 0.

Case 1. 𝑋𝐴, 𝑋𝐵 > 0 (i.e., 𝜃𝐴 = 𝜃𝐵 = 0)
From (31) and (32),

𝜆 = 𝛽
𝑛𝐴 (𝑢(𝑥, 𝑎𝑅) + 𝑋𝐴 − �̄�𝐴) =

1 − 𝛽
𝑛𝐵 (𝑣(𝑥, 𝑏𝑅) + 𝑋𝐵 − ̄𝑣𝐵) . (34)

Substituting this condition into (30) yields

1 − 𝛽
𝑛𝐵 (𝑣(𝑥, 𝑏𝑅) + 𝑋𝐵 − ̄𝑣𝐵) (𝑛𝐴𝑢𝑥(𝑥, 𝑎𝑅) + 𝑛𝐵𝑣𝑥(𝑥, 𝑏𝑅) − 𝑐′(𝑥)) = 0,

which implies that 𝑛𝐴𝑢𝑥(𝑥, 𝑎𝑅) + 𝑛𝐵𝑣𝑥(𝑥, 𝑏𝑅) = 𝑐′(𝑥). Again, from the second equality of (34),

𝑋𝐵 =
(1 − 𝛽)𝑛𝐴 (𝑢(𝑥, 𝑎𝑅) + 𝑋𝐴 − �̄�𝐴)

𝛽𝑛𝐵
− (𝑣(𝑥, 𝑏𝑅) − �̄�𝐵) .

Substituting this into (33) yields

𝑋𝐴 = 𝛽
𝑛𝐴

(𝑛𝐴𝑢(𝑥, 𝑎𝑅) + 𝑛𝐵𝑣(𝑥, 𝑏𝑅) + 𝐼𝐴 + 𝐼𝐵 − 𝑐(𝑥) − 𝑛𝐴�̄�𝐴 − 𝑛𝐵 ̄𝑣𝐵) − (𝑢(𝑥, 𝑎𝑅) − �̄�𝐴) .
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Then,

𝑋𝐵 =
1 − 𝛽
𝑛𝐵

(𝑛𝐴𝑢(𝑥, 𝑎𝑅) + 𝑛𝐵𝑣(𝑥, 𝑏𝑅) + 𝐼𝐴 + 𝐼𝐵 − 𝑐(𝑥) − 𝑛𝐴�̄�𝐴 − 𝑛𝐵 ̄𝑣𝐵) − (𝑣(𝑥, 𝑎𝑅) − ̄𝑣𝐵) .

Case 2. 𝑋𝑖 = 0 and 𝑋𝑗 > 0 (i.e., 𝜃𝑗 = 0)
We consider the case in which 𝑋𝐴 = 0 and 𝑋𝐵 > 0.5) From (32),

𝜆 = 1 − 𝛽
𝑛𝐵 (𝑣(𝑥, 𝑏𝑅) + 𝑋𝐵 − ̄𝑣𝐵) . (35)

From (33),
𝑋𝐵 =

𝐼𝐴 + 𝐼𝐵 − 𝑐(𝑥)
𝑛𝐵

.

Because 𝑋𝐵 > 0, 𝐼𝐴 + 𝐼𝐵 > 𝑐(𝑥) holds. From (31) and (35),

𝛽
𝑢(𝑥, 𝑎𝑅) + 𝑋𝐴 − �̄�𝐴 = 𝑛𝐴 (1 − 𝛽)

𝑛𝐵 (𝑣(𝑥, 𝑏𝑅) + 𝑋𝐵 − ̄𝑣𝐵) − 𝜃𝐴. (36)

Substituting (35) and (36) into (30) yields

1 − 𝛽
𝑛𝐵 (𝑣(𝑥, 𝑏𝑅) + 𝑋𝐵 − ̄𝑣𝐵) (𝑛𝐴𝑢𝑥(𝑥, 𝑎𝑅) + 𝑛𝐵𝑣𝑥(𝑥, 𝑏𝑅) − 𝑐′(𝑥)) = 𝜃𝐴𝑢𝑥(𝑥, 𝑎𝑅). (37)

We show that 𝜃𝐴 = 0 by contradiction. Suppose, to the contrary, that 𝜃𝐴 > 0. Then, from (37),
we have that 𝑛𝐴𝑢𝑥(𝑥, 𝑎𝑅) + 𝑛𝐵𝑣𝑥(𝑥, 𝑏𝑅) > 𝑐′(𝑥). We can take another project level ̃𝑥, which is
slightly greater than 𝑥, such that ̃𝑥 > 𝑥, 𝑛𝐴𝑢𝑥( ̃𝑥, 𝑎𝑅) + 𝑛𝐵𝑣𝑥( ̃𝑥, 𝑏𝑅) > 𝑐′( ̃𝑥), and 𝐼𝐴 + 𝐼𝐵 > 𝑐( ̃𝑥). Set

�̃�𝐴 = −𝑢( ̃𝑥, 𝑎𝑅) + 𝑢(𝑥, 𝑎𝑅) + 𝜀𝐴 and �̃�𝐵 = −𝑣( ̃𝑥, 𝑏𝑅) + 𝑣(𝑥, 𝑏𝑅) +
𝐼𝐴 + 𝐼𝐵 − 𝑐(𝑥)

𝑛𝐵
+ 𝜀𝐵 ,

where

𝜀𝐴 ≥ 𝑢( ̃𝑥, 𝑎𝑅) − 𝑢(𝑥, 𝑎𝑅),

𝜀𝐵 ≥ max {0, 𝑣( ̃𝑥, 𝑏𝑅) − 𝑣(𝑥, 𝑏𝑅) −
𝐼𝐴 + 𝐼𝐵 − 𝑐(𝑥)

𝑛𝐵
} , and

𝑛𝐴𝜀𝐴 + 𝑛𝐵𝜀𝐵 ≤ 𝐼𝐴 + 𝐼𝐵 − 𝑛𝐴 (−𝑢( ̃𝑥, 𝑎𝑅) + 𝑢(𝑥, 𝑎𝑅)) − 𝑛𝐵 (−𝑣( ̃𝑥, 𝑏𝑅) + 𝑣(𝑥, 𝑏𝑅) +
𝐼𝐴 + 𝐼𝐵 − 𝑐(𝑥)

𝑛𝐵
)

− 𝑐( ̃𝑥) (38)

(38) implies that 𝑛𝐴�̃�𝐴 + 𝑛𝐵�̃�𝐵 + 𝑐( ̃𝑥) ≤ 𝐼𝐴 + 𝐼𝐵 : ( ̃𝑥, �̃�𝐴, �̃�𝐵) is feasible in this economy.
At (𝑥, 𝑋𝐴, 𝑋𝐵), 𝑈(𝑥, 𝑋𝐴; 𝑎𝑅) = 𝑢(𝑥, 𝑎𝑅) and 𝑉(𝑥, 𝑋𝐵 ; 𝑏𝑅) = 𝑣(𝑥, 𝑏𝑅) + (𝐼𝐴 + 𝐼𝐵 − 𝑐(𝑥)) /𝑛𝐵 . At

( ̃𝑥, �̃�𝐴, �̃�𝐵), 𝑈( ̃𝑥, �̃�𝐴; 𝑎𝑅) = 𝑢( ̃𝑥, 𝑎𝑅) + �̃�𝐴 = 𝑢(𝑥, 𝑎𝑅) + 𝜀𝐴 and 𝑉( ̃𝑥, �̃�𝐵 ; 𝑏𝑅) = 𝑣( ̃𝑥, 𝑏𝑅) + �̃�𝐵 =
𝑣(𝑥, 𝑏𝑅) + (𝐼𝐴 + 𝐼𝐵 − 𝑐(𝑥)) /𝑛𝐵 + 𝜀𝐵 . Because 𝜀𝐴 > 0 and 𝜀𝐵 ≥ 0, (𝑥, 𝑋𝐴, 𝑋𝐵) does not maxi-
mize the Nash product function, which is a contradiction. Thus, 𝜃𝐴 = 0 and, hence, from (37),
𝑛𝐴𝑢𝑥(𝑥, 𝑎𝑅) + 𝑛𝐵𝑣𝑥(𝑥, 𝑏𝑅) = 𝑐′(𝑥).

Case 3. 𝑋𝐴 = 𝑋𝐵 = 0
From (33), the project level is determined by 𝑐(𝑥) = 𝐼𝐴 + 𝐼𝐵 . ■

5)The case of𝑋𝐴 > 0 and𝑋𝐵 = 0 is similar.
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Proof of Result 3
Because 𝑎𝑀 ∈ ( ̃𝑎𝑅(𝛾∗), ̄𝑎] and 𝑥𝐴 is constant on this interval, by (27), we have

𝜕𝑥𝐴
𝜕𝑎𝑅

|||𝑎𝑅=𝑎𝑀,𝛾=𝛾∗
= 0.

As in Lemma 2, if (𝑎𝑅, 𝑏𝑅) = (𝑎𝑀 , 𝑏𝑀) and 𝛾 = 𝛾∗, then

𝜕 𝑈(𝑥𝑛𝑏, 𝑋𝑛𝑏
𝐴 ; 𝑎𝑀)

𝜕 𝑎𝑅
=𝜕𝑥

𝑛𝑏

𝜕𝑎𝑅
[𝑢𝑥(𝑥𝑛𝑏(𝑎𝑀 , 𝑏𝑀), 𝑎𝑀) − 𝑢𝑥(𝑥𝑛𝑏(𝑎𝑀 , 𝑏𝑀), 𝑎𝑀)]

−(1 − 𝛽) [𝑢𝑎(𝑥𝑛𝑏(𝑎𝑀 , 𝑏𝑀), 𝑎𝑀) − 𝑢𝑎(𝑥𝐴(𝑎𝑀 , 𝛾∗), 𝑎𝑀)]
= − (1 − 𝛽) [𝑢𝑎(𝑥𝑛𝑏(𝑎𝑀 , 𝑏𝑀), 𝑎𝑀) − 𝑢𝑎(𝑥𝐴(𝑎𝑀 , 𝛾∗), 𝑎𝑀)]

and
𝜕 𝑉(𝑥𝑛𝑏, 𝑋𝑛𝑏

𝐵 ; 𝑏𝑀)
𝜕 𝑏𝑅

= 𝜕𝑥𝑛𝑏
𝜕𝑏𝑅

[𝑣𝑥(𝑥𝑛𝑏(𝑎𝑀 , 𝑏𝑀), 𝑏𝑀) − 𝑣𝑥(𝑥𝑛𝑏(𝑎𝑀 , 𝑏𝑀), 𝑏𝑀)]

− 𝛽[𝑣𝑏(𝑥𝑛𝑏(𝑎𝑀 , 𝑏𝑀), 𝑏𝑀) − 𝑣𝑏(𝑥𝐴(𝑎𝑀 , 𝛾∗), 𝑏𝑀)]
= −𝛽[𝑣𝑏(𝑥𝑛𝑏(𝑎𝑀 , 𝑏𝑀), 𝑏𝑀) − 𝑣𝑏(𝑥𝐴(𝑎𝑀 , 𝛾∗), 𝑏𝑀)].

Thus, the first-order condition of (8) is satisfied at (𝑎𝑅, 𝑏𝑅) = (𝑎𝑀 , 𝑏𝑀) and 𝛾 = 𝛾∗ if and only if
𝑥𝑛𝑏(𝑎𝑀 , 𝑏𝑀) = 𝑥𝐴(𝑎𝑀 , 𝛾∗). ■

D Amodel of the endogenous choice of 𝛾
We analyze the model presented in Section 4.2 in the main text. Without loss of generality, we
assume that 𝑛𝐴 > 𝑛𝐵 , which implies that the value of 𝛾 is decided by region A’s representative in
the legislature of the central government. Hereafter, we explicitly denote 𝑇𝑛𝑏 by 𝑇𝑛𝑏(𝛾), and 𝑥𝑛𝑏
by 𝑥𝑛𝑏(𝛾) because they depend on the value of 𝛾.

First, we show that region A’s median resident is decisive in determining 𝛾. The value of 𝛾 de-
pends on who is the representative of region A. Let 𝛾[𝑎𝑀] be the cost-matching rate that maximizes
the payoff to resident 𝑎𝑀 , 𝑈(𝑥𝑛𝑏(𝛾), 𝑇𝑛𝑏(𝛾); 𝑎𝑀) = 𝑎𝑀𝜇(𝑥𝑛𝑏(𝛾)) + (𝐼𝐴/𝑛𝐴) − (𝛾/𝑛𝐴) 𝑐(𝑥𝑛𝑏(𝛾)) +
(𝑛𝐵/𝑛𝐴) 𝑇𝑛𝑏(𝛾). Let 𝛾′ ≠ 𝛾[𝑎𝑀]. Because 𝛾[𝑎𝑀]maximizes the payoff of 𝑎𝑀 ,

𝑎𝑀𝜇 (𝑥𝑛𝑏 (𝛾[𝑎𝑀])) + ( 𝐼𝐴𝑛𝐴
) − (𝛾[𝑎𝑀]𝑛𝐴

) 𝑐 (𝑥𝑛𝑏 (𝛾[𝑎𝑀])) + (𝑛𝐵𝑛𝐴
) 𝑇𝑛𝑏 (𝛾[𝑎𝑀])

≥𝑎𝑀𝜇 (𝑥𝑛𝑏 (𝛾′)) + ( 𝐼𝐴𝑛𝐴
) − ( 𝛾

′

𝑛𝐴
) 𝑐 (𝑥𝑛𝑏 (𝛾′)) + (𝑛𝐵𝑛𝐴

) 𝑇𝑛𝑏 (𝛾′) ,

which is equivalent to

𝑎𝑀 [𝜇 (𝑥𝑛𝑏 (𝛾[𝑎𝑀])) − 𝜇 (𝑥𝑛𝑏 (𝛾′))]

≥ 1
𝑛𝐴

[𝛾𝑐 (𝑥𝑛𝑏 (𝛾[𝑎𝑀])) − 𝛾′𝑐 (𝑥𝑛𝑏 (𝛾′))] + 𝑛𝐵
𝑛𝐴

[𝑇𝑛𝑏 (𝛾′) − 𝑇𝑛𝑏 (𝛾[𝑎𝑀])] . (39)

If 𝑥𝑛𝑏 (𝛾[𝑎𝑀]) > 𝑥𝑛𝑏 (𝛾′), then for all 𝑎′ ∈ 𝒜, such that 𝑎′ > 𝑎𝑀 ,

𝑎𝑀 [𝜇 (𝑥𝑛𝑏 (𝛾[𝑎𝑀])) − 𝜇 (𝑥𝑛𝑏 (𝛾′))] < 𝑎′ [𝜇 (𝑥𝑛𝑏 (𝛾[𝑎𝑀])) − 𝜇 (𝑥𝑛𝑏 (𝛾′))] . (40)

Combining (39) and (40) yields

𝑎′𝜇 (𝑥𝑛𝑏 (𝛾[𝑎𝑀])) + ( 𝐼𝐴𝑛𝐴
) − (𝛾[𝑎𝑀]𝑛𝐴

) 𝑐 (𝑥𝑛𝑏 (𝛾[𝑎𝑀])) + (𝑛𝐵𝑛𝐴
) 𝑇𝑛𝑏 (𝛾[𝑎𝑀])

>𝑎′𝜇 (𝑥𝑛𝑏 (𝛾′)) + ( 𝐼𝐴𝑛𝐴
) − ( 𝛾

′

𝑛𝐴
) 𝑐 (𝑥𝑛𝑏 (𝛾′)) + (𝑛𝐵𝑛𝐴

) 𝑇𝑛𝑏 (𝛾′) . (41)
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In a similar way, we obtain (41) for all 𝑎′ ∈ 𝒜, such that 𝑎′ < 𝑎𝑀 if 𝑥𝑛𝑏 (𝛾[𝑎𝑀]) < 𝑥𝑛𝑏 (𝛾′).
Therefore, these observations prove that 𝛾 chosen by 𝑎𝑀 is the pairwise majority winner.6)

Because 𝛾[𝑎𝑀] is chosen by the median resident 𝑎𝑀 and 𝛾[𝑎𝑀] is the pairwise majority winner
among 𝛾 ∈ [0, 1], then the majority of region A’s residents must support the median resident 𝑎𝑀 as
the representative of the central legislature.7) In conclusion, the median resident of more populous
region is decisive in determining 𝛾.

We create Table 1 based on thenumerical analyses inExample 1, taking (𝑛𝐵 , 𝑏𝑀 , 𝛽) = (1, 0.5, 0.5)
as fixed. Because the second-order condition for region A’smedian resident holds if 1/√3 ≈ 0.577 <
𝛾 ≤ 1 (see (11)), we derive the optimal 𝛾 for region A’s median resident constrained on the interval
(1/√3, 1]. Table 1 shows the relation between 𝑛𝐴, 𝑎𝑀 , 𝛾[𝑎𝑀], and 𝛾∗ (the Lindahl price in Theorem
1). See Table 1 and the discussion after Table 1 in the main text.

6)Similarly, we can show that 𝛾 chosen by 𝑏𝑀 is the pairwise majority winner if 𝑛𝐵 > 𝑛𝐴.
7)We assume that if the same outcomes (i.e., 𝑥𝑛𝑏(𝛾[𝑎𝑀]) and 𝑇𝑛𝑏(𝛾[𝑎𝑀])) are achieved when 𝑎 ≠ 𝑎𝑀 is region A’s

representative, then 𝑎𝑀 is majority-preferred to 𝑎.
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